
Ball-collision decoding

Daniel J. Bernstein1, Tanja Lange2, and Christiane Peters2 ?

1 Department of Computer Science
University of Illinois at Chicago, Chicago, IL 60607–7045, USA

djb@cr.yp.to
2 Department of Mathematics and Computer Science

Technische Universiteit Eindhoven, P.O. Box 513, 5600 MB Eindhoven, Netherlands
tanja@hyperelliptic.org, c.p.peters@tue.nl

Abstract. This paper introduces a new generic decoding algorithm that is asymptotically faster
than any previous attack against the McEliece cryptosystem. At a 256-bit security level, the at-
tack costs 2.6 times fewer bit operations than the best previous attack; at a theoretical 1000-bit
security level, the attack costs 15.5 times fewer bit operations than the best previous attack. The
algorithm is asymptotically even faster than the Finiasz–Sendrier “lower bound” published at
Asiacrypt 2009, demonstrating that the Finiasz–Sendrier parameter recommendations are not
as secure as claimed. This paper proposes much safer, but still reasonably efficient, parameters
based on an analysis of the fundamental bottleneck in all algorithms of this type.

Keywords: information-set decoding, collision decoding, ball-collision decoding, attacks, McEliece
cryptosystem, Niederreiter cryptosystem

1 Introduction

In 1978 McEliece introduced a fast code-based public-key cryptosystem that has maintained
remarkable strength against every proposed attack. Straightforward algorithms for encryption
and decryption take time b2+o(1) when parameters are chosen to provide b-bit security against
the best attack known today — or when parameters are chosen to provide b-bit security against
the best quantum attack known today.

For comparison, low-exponent RSA encryption takes time b3+o(1) when RSA moduli are
chosen to provide b-bit security against the best attack known today.3 Even more time is
required for RSA decryption, Diffie–Hellman key exchange (in its original form using multi-
plicative groups), etc. Furthermore, the introduction of Shor’s algorithm in 1994 [65] showed
that RSA would need encryption time at least 2(1/2+o(1))b to provide b-bit security against
quantum attacks. Elliptic-curve cryptography offers b2+o(1) encryption time and decryption
time but, like RSA, will not survive quantum computers.

Attack optimization and parameter selection. Generic decoding algorithms such as
“information-set decoding” have always been the top threat against the McEliece cryptosys-
tem. There have been dozens of papers analyzing and improving these algorithms. The relevant
ideas are explained and cited later in this paper.

? This work was supported by the Cisco University Research Program, by the European Commission under
Contract ICT-2007-216499 CACE, and by the European Commission under Contract ICT-2007-216646
ECRYPT II. Permanent ID of this document: 0e8c929565e20cf63e6a19794e570bb1. Date: 2010.11.17.

3 Modern algorithms to factor n-bit integers take time 2n1/3+o(1)

, so providing b-bit security requires key size
b3+o(1). Low-exponent encryption using an asymptotically fast FFT-based multiplication algorithm takes
time essentially linear in the key size, and therefore time b3+o(1). Key size b2+o(1) and time b2+o(1) would have
sufficed against Schroeppel’s linear sieve, the best factorization algorithm mentioned in the original 1978
RSA paper [63], but the introduction of the number-field sieve in the early 1990s [51] forced asymptotically
much larger key sizes.

2 D. J. Bernstein, T. Lange, C. Peters

The following example illustrates the cumulative impact of these speedups. McEliece’s
original parameter suggestions (“n = 1024, k = 524, t = 50”) take about 5243

(
1024
50

)
/
(
500
50

)
≈

281 operations to break by the simple information-set-decoding attack explained in McEliece’s
original paper [54, Section 3]. (McEliece estimated the attack cost as 5243(1−50/1024)−524 ≈
265; this underestimate was corrected by Adams and Meijer in [2, Section 3].) The attack
presented by Bernstein, Lange, and Peters in [9], thirty years after McEliece’s paper, builds
on several improvements and takes only about 260.5 operations for the same parameters. That
attack was carried out successfully, decrypting a challenge ciphertext.

The same algorithmic improvements have forced almost a 2× increase in the McEliece key
size, encryption time, and decryption time at high security levels. This is not a bad security
record over three decades, and has no impact on the asymptotic cost b2+o(1) mentioned earlier;
but implementors selecting parameters for the McEliece cryptosystem need to know the limits
of these algorithms, the same way that implementors selecting RSA key sizes need to know
the limits of factorization algorithms.

In an Asiacrypt 2009 paper “Security bounds for the design of code-based cryptosystems”
[32], Finiasz and Sendrier presented “lower bounds on the effective work factor of existing real
algorithms, but also on the future improvements that could be implemented.” For example,
they computed 259.9 as a bound for McEliece’s original parameters, and 2128.5 as a bound for
the larger parameters (4096, 3604, 41). They said that beating these bounds would require the
introduction of “new techniques, never applied to code-based cryptosystems”, and concluded
by suggesting these bounds as a tool to select safe parameters.

Note that the bound 259.9 is quite close to the 260.5 mentioned above. It seemed in retro-
spect that thirty years of refinements had been gradually converging towards the lower bound
identified in [32].

Contents of this paper. This paper introduces a new decoding algorithm that asymptoti-
cally beats the Asiacrypt 2009 lower bound. We call this algorithm “ball-collision decoding”
because of a geometric interpretation explained in Section 4.

Previous algorithms can be seen as special cases of ball-collision decoding; we prove that
those cases are never asymptotically optimal. The asymptotic speedup is easiest to state for
constant code rate k/n and constant error fraction w/n as n→∞: if T is the time taken by the
best previous algorithm then the new algorithm takes time only T/T c+o(1), where c is a positive
constant. The asymptotic speedup factor in the McEliece setting, where w/n converges slowly
to 0 as n→∞, is more complicated to state but still grows superpolynomially.

This paper carefully evaluates the exact cost of ball-collision decoding, using the same
bit-operation-counting rules as in the previous literature. For the parameters (6624, 5129, 117)
proposed in [9, Section 7], the cost of ball-collision decoding is almost 3 times smaller than
the cost of the best previous attack.

Of course, actually breaking those parameters remains very far out of reach, and our
results should not be interpreted as damaging the viability of the McEliece cryptosystem.
However, our results do raise new questions regarding the proper choice of parameters for the
McEliece cryptosystem.

The Asiacrypt 2009 lower bound was implicitly based on a combination of several bottle-
necks, some of which are avoided by ball-collision decoding. We propose much safer parame-
ter choices, based on a single fundamental bottleneck. Selecting parameters according to this
proposal loses a small percentage in efficiency compared to merely protecting against known

Ball-collision decoding 3

attacks, but it provides a much higher level of confidence that the parameters will remain
secure against future attacks.

Caveat 1: key size. The McEliece key size b2+o(1) is asymptotically smaller than the RSA
key size b3+o(1), but the RSA key size is smaller for all practical values of b. The ECC key
size is even smaller, just 2b bits. For example, the smallest McEliece key size proposed in [9,
Section 7] for b = 128 was 192192 bytes, while RSA keys at the same security level are just
3072 bits, and ECC keys are just 256 bits.

The relatively large key size has made the McEliece cryptosystem unsuitable for many
applications over the past thirty years. On the other hand, increased network bandwidth and
increased storage space are continuing to reduce the impact of large key sizes. A modern
1.5-terabyte hard drive costing $80 can store several million 192192-byte keys, and a server
storing millions of keys can use those keys to protect much larger volumes of network traffic. At
the low end, Eisenbarth, Güneysu, Heyse, and Paar at CHES 2009 [30] reported successfully
implementing the McEliece cryptosystem (at a somewhat lower security level) on an AVR
microcontroller and a Spartan FPGA.

There have been many proposals that reduce the McEliece key size by deviating in vari-
ous ways from McEliece’s original selection of random binary Goppa codes as error-correcting
codes. Several of these proposals have been broken by “structural attacks” that exploit non-
randomness in the public key. For example, [34] and [31] broke many cases of [55]. The attacks
we consider in this paper are generic attacks that work against any code-based cryptosystem.
The maximum security that any designer can hope to achieve is security against the new
generic decoding attack explained in this paper.

Caveat 2: chosen-ciphertext attacks. “Attacks” above refer only to passive single-target
inversion attacks. The original McEliece cryptosystem, like the original RSA cryptosystem,
is really just a trapdoor one-way function; when used naively as a public-key cryptosystem it
is trivially broken by chosen-ciphertext attacks such as Berson’s attack [11] and the Verheul–
Doumen–van Tilborg attack [71].

Protecting the McEliece system against these attacks, to meet the standard notion of
IND-CCA2 security for a public-key cryptosystem, requires appropriate padding and random-
ization, similar to RSA-OAEP. As shown by Kobara and Imai in [48], adding this protection
does not significantly increase the cost of the McEliece cryptosystem.

Caveat 3: quantum computers. The exponent of this paper’s attack is not as low as the
exponent for quantum information-set decoding reported by Bernstein in [7]. We do not claim
that our parameter recommendations are suitable for post-quantum cryptography; we also do
not claim that our attack optimizations will remain productive in a quantum context. This
paper takes the same view as papers on factorization and discrete logarithms, such as [42]
and [43]: it focuses on achieving security under the (currently reasonable) assumption that
large quantum computers do not exist.

2 Review of the McEliece cryptosystem

The public key in the McEliece cryptosystem consists of a random-looking rank-k matrix
G ∈ Fk×n2 . The sender encrypts a message m in Fk2 by first multiplying it with the matrix
G, producing mG; choosing uniformly at random a word e in Fn2 of Hamming weight w; and
adding e to mG, producing a ciphertext mG+ e. The cryptosystem parameters are n, k, w.

4 D. J. Bernstein, T. Lange, C. Peters

The legitimate receiver decrypts mG + e using a secret key which consists of a secret
decoding algorithm producing the error vector e given mG+ e. The details are not relevant
to the attacks described in this paper and can be found in, e.g., [58].

An attacker is faced with the problem of determining e given G and mG + e. Note that
finding e is equivalent to finding the message m: subtracting e from mG + e produces mG,
and then simple linear transformations produce m.

The set Fk2G =
{
mG : m ∈ Fk2

}
is called a linear code of length n and dimension k, specif-

ically the linear code generated by G. The matrix G is called a generator matrix for this code.
The elements of Fk2G are called codewords. If the linear code Fk2G equals {c ∈ Fn2 : Hc = 0}
then the matrix H is called a parity-check matrix for the code.

Without loss of generality one can assume that the matrix G in a CCA2-secure version
of the McEliece cryptosystem is given in systematic form G = (Ik|−AT) where Ik is a k × k
identity matrix and A an (n−k)×k matrix. Then the matrix H = (A|In−k) is a parity-check
matrix for the code generated by G.

An information set Z for H is a set of k integers in {1, 2, . . . , n} for which the n−k columns
of H that are not indexed by Z are linearly independent. Applying Gaussian elimination to
those n − k columns shows that codewords are determined by their Z-indexed components.
For example, {1, 2, . . . , k} is an information set for H = (A|In−k); codewords are determined
by their first k components.

Let c = mG for m ∈ Fk2 and e ∈ Fn2 with wt(e) = w. Then by linearity one has H(c+e) =
Hc+He = He since Hc = 0. The result s = He is called the syndrome. It is the sum of the
w columns of H that are indexed by the positions of 1’s in e. The attacker’s task is equivalent
to finding e given H and s = He.

3 The ball-collision-decoding algorithm

This section introduces ball-collision decoding. It first presents a simplified statement of the
algorithm and then discusses various optimizations. Section 4 explains how this algorithm
relates to previous algorithms.

The algorithm is given a parity-check matrix H ∈ F
(n−k)×n
2 , a syndrome s ∈ Fn−k2 , and a

weight w ∈ {0, 1, 2, . . .}. The goal of the algorithm is to find a corresponding error vector e:
i.e., a vector e ∈ Fn2 of weight w such that s = He.

Ball-collision decoding has its roots in information-set decoding, which was used against
the McEliece system in, e.g., [67], [16], [17], and [9]. The previous algorithms select a random
information set in the parity-check matrix and then search for vectors having a particular pat-
tern of non-zero entries. Ball-collision decoding is similar but searches for a more complicated,
and more likely, pattern. See Section 4 for further discussion of the previous work.

The reader is encouraged to consider, while reading the algorithm, the case that the
algorithm is given a matrix H already in systematic form and that it chooses Z = {1, 2, . . . , k}
as information set. The matrix U in Step 4 is then the identity matrix In−k. The algorithm
divides H into blocks, and divides the syndrome s into corresponding blocks, as specified by
algorithm parameters `1, `2:

H =

(
A1 I1 0
A2 0 I2

)
, s =

(
s1
s2

)
,

where s1 ∈ F`1+`22 , s2 ∈ Fn−k−`1−`22 , A1 ∈ F
(`1+`2)×k
2 , A2 ∈ F

(n−k−`1−`2)×k
2 , and each Ii is an

identity matrix.

Ball-collision decoding 5

One iteration of ball-collision decoding:
Constants: n, k, w ∈ Z with 0 ≤ w ≤ n and 0 ≤ k ≤ n.
Parameters: p1, p2, q1, q2, k1, k2, `1, `2 ∈ Z with 0 ≤ k1, 0 ≤ k2, k = k1 + k2, 0 ≤ p1 ≤ k1,

0 ≤ p2 ≤ k2, 0 ≤ q1 ≤ `1, 0 ≤ q2 ≤ `2, and 0 ≤ w− p1 − p2 − q1 − q2 ≤ n− k− `1 − `2.
Input: H ∈ F

(n−k)×n
2 and s ∈ Fn−k2 .

Output: Zero or more vectors e ∈ Fn2 with He = s and wt(e) = w.

1. Choose a uniform random information set Z.

2. Choose a uniform random partition of Z into parts of sizes k1 and k2. Subsequent steps
of the algorithm write “Fk12 ” and “Fk22 ” to refer to the corresponding subspaces of FZ2 .

3. Choose a uniform random partition of {1, 2, . . . , n} \ Z into parts of sizes `1, `2, and
n−k−`1−`2. Subsequent steps of the algorithm write “F`12 ” and “F`22 ” and “Fn−k−`1−`22 ”

to refer to the corresponding subspaces of F
{1,2,...,n}\Z
2 .

4. Find an invertible U ∈ F
(n−k)×(n−k)
2 such that the columns of UH indexed by {1, 2, . . . , n}\

Z are an (n − k) × (n − k) identity matrix. Write the columns of UH indexed by Z as(
A1

A2

)
with A1 ∈ F

(`1+`2)×k
2 , A2 ∈ F

(n−k−`1−`2)×k
2 .

5. Write Us as

(
s1
s2

)
with s1 ∈ F`1+`22 , s2 ∈ Fn−k−`1−`22 .

6. Compute the set S consisting of all triples (A1x0 + x1, x0, x1) where x0 ∈ Fk12 × {0}k2 ,

wt(x0) = p1, x1 ∈ F`12 × {0}`2 , wt(x1) = q1.

7. Compute the set T consisting of all triples (A1y0 + y1 + s1, y0, y1) where y0 ∈ {0}k1 ×Fk22 ,

wt(y0) = p2, y1 ∈ {0}`1 × F`22 , wt(y1) = q2.

8. For each (v, x0, x1) ∈ S:
For each y0, y1 such that (v, y0, y1) ∈ T :

If wt(A2(x0 + y0) + s2) = w − p1 − p2 − q1 − q2:
Output the vector e ∈ Fn2 whose Z-indexed components are x0 + y0
and whose remaining components are (x1 + y1||A2(x0 + y0) + s2).

Note that Step 8 is a standard “join” operation between S and T ; it can be implemented
efficiently by sorting or by hashing. Bernstein, Lange, and Peters in [9, Section 6] describe an
efficient implementation of essentially the same operation using only about 2`1+`2+1 bits of
memory. We do not discuss memory issues further in this paper.

Theorem 3.1 (Correctness of ball-collision decoding) The set of output vectors e of
the ball-collision decoding algorithm is the set of vectors e that satisfy He = s, have weights
p1, p2 in blocks of length k1, k2 in the Z-indexed components, and have weights q1, q2, w−p1−
p2 − q1 − q2 in blocks of length `1, `2, n− k − `1 − `2 in the remaining components.

Proof. Each element (v, x0, x1) ∈ S satisfies x0 ∈ Fk12 ×{0}k2 with wt(x0) = p1; v = A1x0+x1
and x1 ∈ F`12 × {0}`2 with wt(x1) = q1. Similarly y0 ∈ {0}k1 × Fk22 with wt(y0) = p2;

v = A1y0 + y1 + s1; y1 ∈ {0}`1 × F`22 with wt(y1) = q2. Now, with Z-indexed columns
visualized as coming before the remaining columns, we have

UHe = UH

 x0 + y0
x1 + y1

A2(x0 + y0) + s2

 =

(
A1(x0 + y0) + x1 + y1

A2(x0 + y0) +A2(x0 + y0) + s2

)
=

(
s1
s2

)
= Us

6 D. J. Bernstein, T. Lange, C. Peters

so He = s. Furthermore, x0 + y0 ∈ Fk1+k22 has weights p1, p2 in blocks of lengths k1, k2;
x1 + y1 ∈ F`1+`22 has weights q1, q2 in blocks of lengths `1, `2; and wt(A2(x0 + y0) + s2) =
w − p1 − p2 − q1 − q2.

Conversely, the iteration finds every vector e having this weight distribution and satisfying
He = s. Indeed, write the Z-indexed columns of e as x0 + y0 and the remaining columns of e
as (x1 + y1||e2) with x0 ∈ Fk12 × {0}k2 , y0 ∈ {0}k1 × Fk22 , x1 ∈ F`12 × {0}`2 , y1 ∈ {0}`1 × F`22 ,
and e2 ∈ Fn−k−`1−`22 . By hypothesis the weights of x0, y0, x1, y1, e2 are p1, p2, q1, q2, w − p1 −
p2 − q1 − q2, respectively. Now define v = A1x0 + x1. The equation UHe = Us implies
v = A1y0 + y1 + s1; and e2 = A2(x0 + y0) + s2. Hence (v, x0, x1) ∈ S and (v, y0, y1) ∈ T .
Finally wt(A2(x0 + y0) + s2) = wt(e2) = w − p1 − p2 − q1 − q2 so the algorithm prints e as
claimed. ut

Finding an information set. The simplest way to choose a uniform random information
set is to repeatedly choose a uniform random size-k subset Z ⊆ {1, 2, . . . , n} until the n − k
columns of H indexed by {1, 2, . . . , n} \ Z are linearly independent. Standard practice (see,
e.g., Stern [67]) is to eliminate the fruitless Gaussian-elimination steps here, at the expense
of negligible bias, by assembling the information set one column at a time, ensuring that each
newly added column is linearly independent of the previously selected columns. After this
optimization there is only one Gaussian-elimination step per iteration.

Reusing intermediate sums. Computing the vector A1x0 for a weight-p1 word x0 in Fk12 ×
{0}k2 can be done by adding the specified p1 columns of A1 in p1 − 1 additions in F`1+`22 .

Computing A1x0 for all the
(
k1
p1

)
vectors x0 can be done more efficiently than repeating

this process for each of them. Start by computing all
(
k1
2

)
sums of 2 columns of A1; each

sum costs one addition in F`1+`22 . Then compute all
(
k1
3

)
sums of 3 columns of A1 by adding

one extra column to the previous results. Proceed in the same way until all
(
k1
p1

)
sums of p1

columns of A1 are computed. This produces all required sums in only marginally more than
one F`1+`22 addition per sum; see Section 5 for a precise operation count.

Early abort. The vector A2(x0 + y0) + s2 is computed as a sum of p1 + p2 + 1 vectors of
length n − k − `1 − `2. Instead of computing the sum on all n − k − `1 − `2 positions one
computes the sum row by row and simultaneously checks the weight. If the weight exceeds
w − p1 − p2 − q1 − q2 one can discard this particular pair (x0, y0).

We comment that one can further reduce the cost of this step by precomputing sums of
smaller sets of columns, but we do not use this idea in our analysis, because it is not critical
for the algorithm’s performance.

4 Relationship to previous algorithms

This section discusses the relationship of ball-collision decoding to previous information-set-
decoding algorithms.

Collision decoding vs. ball-collision decoding. We use the name “collision decoding”
for the special case q1 = q2 = 0 of ball-collision decoding. The idea of collision decoding is
more than twenty years old: Stern’s algorithm in [67] is, aside from trivial details, exactly the
special case q1 = q2 = 0, p1 = p2, k1 ≈ k2. Dumer in [27] independently introduced the core
idea, although in a more limited form, and in [28] achieved an algorithm similar to Stern’s.

Ball-collision decoding 7

All state-of-the-art decoding attacks since [67] have been increasingly optimized forms of
collision decoding. Other approaches to decoding, such as “gradient decoding” ([4]), “super-
code decoding” ([5]), and “statistical decoding” (see [3] and [57]), have never been competitive
with Stern’s algorithm. This does not mean that those approaches should be ignored; our gen-
eralization from collision decoding to ball-collision decoding is inspired by one of the steps in
supercode decoding.

Collision decoding searches for collisions in F`1+`22 between points A1x0 and points A1y0+
s1. Ball-collision decoding expands each point A1x0 into a small ball (in the Hamming metric),
namely {A1x0 + x1 : x1 ∈ F`12 × {0}`2 ,wt(x1) = q1}; similarly expands each point A1y0 into
a small ball; and searches for collisions between these balls.

From the perspective of ball-collision decoding, the fundamental disadvantage of collision
decoding is that errors are required to avoid an asymptotically quite large stretch of `1 + `2
positions. Ball-collision decoding makes a much more reasonable hypothesis, namely that
there are asymptotically increasingly many errors in those positions. It requires extra work
to enumerate the points in each ball, but the extra work is only about the square root of
the improvement in success probability. The cost ratio is asymptotically superpolynomial; see
Section 7.

Collision decoding also has a more superficial disadvantage compared to ball-collision
decoding: its inner loop is slower, since computing A1x0 for a new x0 is considerably more
expensive than adding x1 for a new x1. The cost ratio here is only polynomial, and is not
relevant to the asymptotic analysis (see Section 7), but is accounted for in the bit-operation
count (see Section 5).

Additional credits. The simplest form of information-set decoding, introduced by Prange
in [61], did not allow errors in the information set. For asymptotic analyses see [54], [1], and
[2].

The idea of allowing errors was published by Lee and Brickell in [50], by Leon in [52],
and by Krouk in [49], but without Stern’s collision idea; in the terminology of ball-collision
decoding, with p2 = 0, q1 = q2 = 0, and `2 = 0. For each pattern of p1 errors in k columns, Lee
and Brickell checked the weight of the remaining n− k columns; Leon and Krouk required `1
columns to have weight 0, and usually checked only those columns. For asymptotic analyses
see [49], [24], and [25].

Overbeck and Sendrier [58] give a visual comparison of the algorithms by comparing to
which interval they restrict how many errors. The following picture extends their picture to
include ball-collision decoding. It shows that the new algorithm allows errors in an interval
that had to be error-free in Leon’s and Stern’s algorithms.

8 D. J. Bernstein, T. Lange, C. Peters

k −
Plain information-set decoding

0 w

Lee-Brickell
p w − p

ℓ n− k − ℓ
Leon

p 0 w − p

Stern
p p 0 w − 2p

Ball-collision decoding (new)

p p q q w − 2p− 2q

One way to speed up Gaussian elimination is to change only one information-set element
in each iteration. This idea was introduced by Omura, according to [22, Section 3.2.4]. It was
applied to increasingly optimized forms of information-set decoding by van Tilburg in [68]
and [69], by Chabanne and Courteau in [19], by Chabaud in [20], by Canteaut and Chabanne
in [15], by Canteaut and Chabaud in [16], and by Canteaut and Sendrier in [17]. Bernstein,
Lange, and Peters in [9] improved the balance between Gaussian-elimination cost and error-
searching cost by changing c information-set elements in each iteration for an optimized value
of c.

The ideas of reusing sums and aborting weight calculations also appeared in [9], in the
context of an improved collision-decoding algorithm; we generalize to ball-collision decod-
ing. The most recent improvements are an asymptotic Θ(p1/4) “birthday” speedup achieved
by Finiasz and Sendrier in [32] by dropping Stern’s left-right separation, and an optimized
generalization to Fq by Peters in [59].

5 Complexity analysis

This section analyzes the complexity of ball-collision decoding. In particular, this section
analyzes the success probability of each iteration and the number of bit operations needed for
each iteration.

Success probability. Assume that e is a uniform random vector of weight w. One iteration
of ball-collision decoding finds e exactly if it has the right weight distribution, namely weight
p1 in the first k1 positions specified by the information set, weight p2 in the remaining k2
positions specified by the information set, weight q1 on the first `1 positions outside the
information set, and weight q2 on the next `2 positions outside the information set.

The probability that e has this weight distribution is, by a simple counting argument,
exactly

b(p1, p2, q1, q2, `1, `2) =

(
n

w

)−1(n− k − `1 − `2
w − p1 − p2 − q1 − q2

)(
k1
p1

)(
k2
p2

)(
`1
q1

)(
`2
q2

)
.

The expected number of iterations of the outer loop is, for almost all H, very close to
the reciprocal of the success probability of a single iteration. We explicitly disregard, without
further comment, the extremely unusual codes for which the average number of iterations is
significantly different from the reciprocal of the success probability of a single iteration. For
further discussion of this issue and how unusual it is see, e.g., [25] and [10].

Ball-collision decoding 9

Gaussian elimination. There are several ways to speed up Gaussian elimination, as dis-
cussed in Section 4, and implementors are encouraged to use those optimizations. However,
in this paper we will be satisfied with a quite naive form of Gaussian elimination, taking
(1/2)(n − k)2(n + k) bit operations; our interest is in large input sizes, and Gaussian elimi-
nation takes negligible time for those sizes.

Building the set S. Using intermediate sums, the total cost amounts to

(`1 + `2)

((
k1
2

)
+

(
k1
3

)
+ · · ·

(
k1
p1

))
.

Using L(k, p) =
∑p

i=1

(
k
i

)
as a shorthand, the costs can be written as (`1+`2) (L(k1, p1)− k1).

Then, for each A1x0 all
(
`1
q1

)
possible words x1 in F`12 × 0`2 of weight at most q1 are

added to compute vectors A1x0 +x1. Again intermediate sums can be used, so this step takes
min{1, q1}

(
k1
p1

)
L(`1, q1) bit operations; note that for q1 = 0 the cost of this step is indeed 0.

Each choice of (x0, x1) adds one element to S. Hence, the number of elements in S equals
exactly the number of choices for x0 and x1, i.e. #S =

(
k1
p1

)(
`1
q1

)
.

Building the set T . The set T is built similarly to the set S. The only difference is that
the expression A1y0 + y1 + s1 involves adding s1 and thus the single columns (corresponding
to weight-1 words y0) already cost (`1 + `2)

(
k2
1

)
bit operations. In total this step takes (`1 +

`2)L(k2, p2) + min{1, q2}
(
k2
p2

)
L(`2, q2).

The set T contains exactly #T =
(
k2
p2

)(
`2
q2

)
elements.

Checking collisions. The last step does one check for every (x0, x1, y0, y1) satisfying the
equation A1x0 + x1 = A1y0 + y1 + s1. There are

(
k1
p1

)(
k2
p2

)(
`1
q1

)(
`2
q2

)
choices of (x0, x1, y0, y1).

If the vectors v appearing in S and T were uniformly distributed among the 2`1+`2 possible
values then on average #S ·#T ·2−`1−`2 checks would be done. The expected number of checks
is extremely close to this for almost all H; as above we disregard the extremely unusual codes
with different behavior.

Each check consists of computing wt(A2(x0 + y0) + s2) and testing whether it equals
w − p1 − p2 − q1 − q2. When using the early-abort weight calculation, on average only 2(w −
p1−p2− q1− q2 +1) bits of the result are computed before the weight is found too high. Each
bit of the result costs p1 + p2 bit operations because x0 + y0 has weight p1 + p2.

Cost of one iteration. To summarize, the total cost per iteration of the inner loop with
parameters p1, p2, q1, q2, `1, `2 amounts to

c(p1, p2, q1, q2, `1, `2) =
1

2
(n− k)2(n+ k) + (`1 + `2)

(
L(k1, p1) + L(k2, p2)− k1

)
+ min{1, q1}

(
k1
p1

)
L(`1, q1) + min{1, q2}

(
k2
p2

)
L(`2, q2)

+ 2(w − p1 − p2 − q1 − q2 + 1)(p1 + p2)

(
k1
p1

)(
k2
p2

)(
`1
q1

)(
`2
q2

)
2−`1−`2 .

6 Concrete parameter examples

This section considers concrete examples in order to show the speedup gained by ball-collision
decoding in comparison to collision decoding. The first parameters were previously proposed to

10 D. J. Bernstein, T. Lange, C. Peters

achieve 256-bit security against current attacks. We designed the second parameters according
to similar rules to achieve a 1000-bit security level against current attacks. We do not mean
to suggest that 1000-bit security is of any real-world relevance; we consider it to demonstrate
the asymptotic superiority of ball-collision decoding.

For each set of parameters we consider the following costs:

(1) the cost of collision decoding (q1 = q2 = 0),
(2) the cost of collision decoding using the birthday trick from [32] as analyzed in [59],
(3) the lower bound given by Finiasz and Sendrier in [32], and
(4) the cost of ball-collision decoding.

Note that (1), (2), and (4) are actual algorithm costs whereas (3) is merely a lower bound.

256-security revisited. According to [9, Section 7] a binary code with length n = 6624,
k = 5129, w = 117 achieves 256-bit security. The best collision-decoding parameters are
actually slightly below 2256 bit operations: they use 2181.4928 iterations (on average), each
taking 274.3741 bit operations, for a total of 2255.8669 bit operations.

Collision decoding with the birthday trick takes, with optimal parameters, 2255.54880 bit
operations. The birthday trick increases the cost per iteration by a factor of 2.2420 compared
to the classical collision-decoding algorithm, to 275.5390 bit operations. However, the trick
increases the chances of finding the desired error vector noticeably, reducing the number
of iterations by a factor of 2.7951, to 2180.0099. Thus the birthday trick yields an overall
1.2467039× speedup.

The Finiasz–Sendrier lower bound is 2255.1787 bit operations, 1.6112985× smaller than the
cost of collision decoding.

Ball-collision decoding with parameters k1 = 2565, k2 = 2564, `1 = `2 = 47, p1 = p2 = 8,
and q1 = q2 = 1 needs only 2254.1519 bit operations to attack the same system. On average
the algorithm needs 2170.6473 iterations each taking 283.504570 bit operations.

Ball-collision decoding thus costs 3.2830× less than collision decoding, 2.6334× less than
collision decoding with the birthday trick, and 2.0375× less than the Finiasz–Sendrier lower
bound.

1000-bit security. Attacking a system based on a code of length n = 30332, k = 22968,
w = 494 requires 21000.9577 bit operations using collision decoding with the optimal parameters
k1 = k2 = 11484, `1 = `2 = 140, p1 = p2 = 27 and q1 = q2 = 0.

The birthday trick reduces the cost by a factor of 1.7242831, to 21000.1717 bit operations.
This means that this system offers 1000-bit security against all previously known attacks.

The Finiasz–Sendrier lower bound is 2999.45027 bit operations, 2.8430× smaller than the
cost of collision decoding and 1.6488× smaller than the cost of collision decoding with the
birthday trick.

Ball-collision decoding with parameters k1 = k2 = 11484, `1 = `2 = 156, p1 = p2 = 29,
and q1 = q2 = 1 needs only 2996.21534 bit operations. This is 26.767× smaller than the cost
of collision decoding, 15.523× smaller than the cost of collision decoding with the birthday
trick, and 9.415× smaller than the Finiasz–Sendrier lower bound.

7 Asymptotic complexity of ball-collision decoding

This section analyzes the asymptotic behavior of the cost of ball-collision decoding, and shows
that it always has a smaller asymptotic exponent than the cost of collision decoding.

Ball-collision decoding 11

For comparison, Finiasz and Sendrier say in [32, Section 3.3] that their birthday trick
and their lower bound gain only Θ(p1/4) ≤ Θ(n1/4) compared to collision decoding. Any
polynomial factor in n makes no change in the asymptotic cost exponent, so the speedup
from ball-collision decoding is asymptotically much larger than the speedup from the birthday
trick.

Input sizes. Fix a real number W with 0 < W < 1/2, and fix a real number R with
−W log2W − (1−W) log2(1−W) ≤ 1−R < 1.

Consider codes and error vectors of very large length n, where the codes have dimension
k ≈ Rn, and the error vectors have weight w ≈ Wn. More precisely, fix functions k,w :
{1, 2, . . .} → {1, 2, . . .} that satisfy limn→∞ k(n)/n = R and limn→∞w(n)/n = W ; more
concisely, k/n→ R and w/n→W .

Attack parameters. Fix real numbers P,Q,L with 0 ≤ P ≤ R/2, 0 ≤ Q ≤ L, and 0 ≤
W − 2P − 2Q ≤ 1 − R − 2L. Fix ball-collision parameters p1, p2, q1, q2, k1, k2, `1, `2 with
pi/n→ P , qi/n→ Q, ki/n→ R/2, and `i/n→ L.

We have also analyzed more general asymptotic parameter spaces, for example splitting
P into P1, P2 where pi/n→ Pi. Balanced parameters always turned out to be asymptotically
optimal (as one would expect), so this section focuses on the parameter space (P,Q,L) stated
above. Note that the asymptotic optimality of P1 = P2 does not imply the concrete optimality
of p1 = p2; for example, (p1, p2) = (2, 1) appears to be optimal for some small input sizes.

In the formulas below, expressions of the form x log2 x are extended (continuously but not
differentiably) to 0 at x = 0. For example, the expression P log2 P means 0 if P = 0.

Success probability. We repeatedly invoke the standard asymptotic formula for binomial
coefficients, namely

1

n
log2

(
(α+ o(1))n

(β + o(1))n

)
→ α log2 α− β log2 β − (α− β) log2(α− β),

to compute the asymptotic exponent of the success probability of a single iteration of ball-
collision decoding:

B(P,Q,L) = lim
n→∞

1

n
log2

((
n

w

)−1(n− k − `1 − `2
w − p1 − p2 − q1 − q2

)(
k1
p1

)(
k2
p2

)(
`1
q1

)(
`2
q2

))
= W log2W + (1−W) log2(1−W)

+ (1−R− 2L) log2(1−R− 2L)− (W − 2P − 2Q) log2(W − 2P − 2Q)

− (1−R− 2L− (W − 2P − 2Q)) log2(1−R− 2L− (W − 2P − 2Q))

+R log2(R/2)− 2P log2 P − (R− 2P) log2(R/2− P)

+ 2L log2 L− 2Q log2Q− 2(L−Q) log2(L−Q).

The success probability of a single iteration is asymptotically 2n(B(P,Q,L)+o(1)).

12 D. J. Bernstein, T. Lange, C. Peters

Iteration cost. We similarly compute the asymptotic exponent of the cost of an iteration:

C(P,Q,L) = lim
n→∞

1

n
log2

((
k1
p1

)(
`1
q1

)
+

(
k2
p2

)(
`2
q2

)
+

(
k1
p1

)(
`1
q1

)(
k2
p2

)(
`2
q2

)
2−`1−`2

)
= max{(R/2) log2(R/2)− P log2 P − (R/2− P) log2(R/2− P)

+ L log2 L−Q log2Q− (L−Q) log2(L−Q),

R log2(R/2)− 2P log2 P − (R− 2P) log2(R/2− P)

+ 2L log2 L− 2Q log2Q− 2(L−Q) log2(L−Q)− 2L}.

The cost of a single iteration is asymptotically 2n(C(P,Q,L)+o(1)). Note that we have simplified
the iteration cost to

(
k1
p1

)(
`1
q1

)
+
(
k2
p2

)(
`2
q2

)
+
(
k1
p1

)(
`1
q1

)(
k2
p2

)(
`2
q2

)
2−`1−`2 . The cost is actually larger than

this, but only by a factor ≤ poly(n), which we are free to disregard since 1
n log2 poly(n)→ 0.

We also comment that the bounds are valid whether or not qi = 0.

Overall attack cost. The overall asymptotic ball-collision-decoding-cost exponent is the
difference D(P,Q,L) of the iteration-cost exponent C(P,Q,L) and the success-probability
exponent B(P,Q,L).

For example, takeW = 0.04 andR = 1+W log2W+(1−W) log2(1−W) = 0.7577078109
Choose P = 0.004203556640625, Q = 0.000192998046875, and L = 0.017429431640625.
The success-probability exponent is −0.0458435310 . . ., and the iteration-cost exponent is
0.0348588632 . . ., so the ball-collision decoding exponent is 0.0807023942 Ball-collision
decoding with these parameters therefore costs 2(0.0807023942...+o(1))n to correct (0.04 + o(1))n
errors in a code of rate 0.7577078109 . . .+ o(1).

Collision-decoding cost and the lower bound. Traditional collision decoding is the
special case p1 = p2, k1 = k2, `1 = `2, q1 = q2 = 0 of ball-collision decoding. Its asymptotic
cost exponent is the case Q = 0 of the ball-collision decoding exponent stated above.

Consider again W = 0.04 and R = 1 + W log2W + (1 − W) log2(1 − W). Choosing
P = 0.00415087890625, Q = 0, and L = 0.0164931640625 achieves decoding exponent
0.0809085120 We partitioned the (P,L) space into small intervals and performed interval-
arithmetic calculations to show that Q = 0 cannot do better than 0.0809; ball-collision de-
coding therefore has a slightly smaller exponent than collision decoding in this case.

We performed similar calculations for other pairs (W,R) and in each case found that the
infimum of all collision-decoding-cost exponents was beaten by a ball-collision-decoding-cost
exponent. Ball-collision decoding therefore has a smaller exponent than collision decoding, as
stated in the introduction of this paper.

The case Q = 0 is always suboptimal. The interval-arithmetic calculations described
above are proofs of the suboptimality of Q = 0 for some specific pairs (W,R). These proofs
have the advantage of computing explicit bounds on the collision-decoding-cost exponents for
those pairs (W,R), but the proofs have two obvious disadvantages.

The first disadvantage is that these proofs do not cover all pairs (W,R); they leave open the
possibility that ball-collision decoding has the same exponent as collision decoding for other
pairs (W,R). The second disadvantage is that the proofs are much too long to verify by hand.
The first disadvantage could perhaps be addressed by much more extensive interval-arithmetic
calculations, partitioning the space of pairs (W,R) into boxes so small that, within each box,
the ball-collision-decoding exponent is uniformly better than the minimum collision-decoding
exponent; but this would exacerbate the second disadvantage.

Ball-collision decoding 13

To address both of these disadvantages we give, in Appendix A, a proof that Q = 0 is
always suboptimal: for every (W,R), ball-collision decoding has a smaller asymptotic cost
exponent than collision decoding. Specifically, we prove the following theorem about the
overall asymptotic cost exponent:

Theorem 7.1 For each R,W it holds that

min{D(P, 0, L) : 0 ≤ P ≤ R/2, 0 ≤W − 2P ≤ 1−R− 2L}
> min{D(P,Q,L) : 0 ≤ P ≤ R/2, 0 ≤ Q ≤ L, 0 ≤W − 2P − 2Q ≤ 1−R− 2L}.

Note that {(P, 0, L)} and {(P,Q,L)} are compact sets, and D is continuous, so we are
justified in writing “min” rather than “inf”. The proof relies on one small computer calculation
(proving that (−W log2W)X > 2W for 0 < W ≤ 0.1, where X is a function of W defined in
the appendix) but aside from this is completely hand-verifiable.

Asymptotics for non-constant error fractions. Constant rates and constant error frac-
tions are traditional in the study of coding-theory asymptotics, but they are not exactly
right in the study of code-based cryptography. McEliece uses error fraction approximately
(1 − R)/log2 n, and 1/log2 n slowly decreases to 0 as n → ∞. Asymptotics for collision-
decoding cost in this context appeared recently in [10], and in general appear to have the
form

(1−R)−(1−R)n/log2 n+(constant+o(1))n/(log2 n)
2
.

With some effort one can use the same techniques to check that the ball-collision-decoding
speedup factor is asymptotically 2(c+o(1))n/(log2 n)

2
with c > 0. This factor is asymptotically

much larger than any of the recent speedups discussed in [9] and [32].

8 Choosing McEliece parameters

The traditional approach to selecting cryptosystem parameters is as follows:

– Consider the fastest known attacks against the system. For example, in the case of RSA,
consider the latest refinements [47] of the number-field sieve.

– Restrict attention to parameters for which these attacks take time at least 2b+δ. Here b
is the desired security level, and δ is a “security margin” meant to protect against the
possibility of further improvements in the attacks.

– Within the remaining parameter space, choose the most efficient parameters. The defini-
tion of efficiency depends on the target application: it could mean minimal key size, for
example, or minimum decryption time.

This approach does not make clear how to choose the security margin δ. Some applications
have ample time and space for cryptography, and can simply increase δ to the maximum
value for which the costs of cryptography are still insignificant; but in some applications
cryptography is an important bottleneck, and users insist on minimizing δ for the sake of
performance.

Finiasz and Sendrier in [32] identified a bound on “future improvements” in attacks against
the McEliece cryptosystem, and suggested that designers use this bound to “choose durable
parameters”. The general idea of identifying bottlenecks in any possible attack, and of using
those bottlenecks to systematically choose δ, is quite natural and attractive, and has been used

14 D. J. Bernstein, T. Lange, C. Peters

successfully in many contexts. However, ball-collision decoding disproves the specific bound
in [32], leaving open the question of how the general idea can be applied to the McEliece
cryptosystem.

We propose replacing the bound in [32] with the simpler bound

min

{
1

2

(
n

w

)(
n− k
w − p

)−1(k
p

)−1/2
: p ≥ 0

}
;

i.e., choosing the code length n, code rate k/n, and error fraction w/n so that this bound
is at least 2b. As usual, implementors can exploit the remaining flexibility in parameters to
optimize decryption time, compressed key size k(n − k), or efficiency in any other metric of
interest.

This bound has several attractive features. It is easy to estimate via standard binomial-
coefficient approximations. It is easy to compute exactly. It covers a very wide class of attacks,
as we explain in a moment. It is nevertheless in the same ballpark as the cost of known attacks:
for example, it is 249.69 for the original parameters (n, k, w) = (1024, 524, 50), and 2236.49 for
(n, k, w) = (6624, 5129, 117). Note that these numbers give lower bounds on the cost of the
attack. Parameters protecting against this bound pay only about a 20% performance penalty
at high security levels, compared to parameters that merely protect against known attacks.

The reader can easily verify that parameters (n, k, w) = (3178, 2384, 68) achieve 128-bit se-
curity against this bound. For 256-bit security (n, k, w) = (6944, 5208, 136) are recommended.

Here is the class of attacks mentioned above. Assume that each iteration of the attack
chooses an information set, hoping for exactly p errors in the set; that the choices of infor-
mation sets are independent of the target syndrome; that each iteration considers at least(
k
p

)1/2
error patterns within the information set; and that testing each pattern costs at least

1. The
(
k
p

)1/2
iterations model the cost of a birthday-type attack on all vectors of length k

with Hamming weight p.

For each ε ≥ 0, a cost bound of ε
(
n
w

)(
n−k
w−p
)−1(k

p

)−1/2
allows at most ε

(
n
w

)(
n−k
w−p
)−1(k

p

)−1
iterations, and each iteration covers at most

(
n−k
w−p
)(
k
p

)
patterns of w errors, so overall the

iterations cover at most ε
(
n
w

)
possible patterns; i.e., the attack succeeds with probability at

most ε. The average attack time is therefore at least 1
2

(
n
w

)(
n−k
w−p
)−1(k

p

)−1/2
. Note that batching

attacks, i.e., attacking multiple targets at once, does not provide any benefits in this approach.
Thus the Johansson–Jonsson speedups for attacking batches of McEliece ciphertexts [41] are
subject to the same bound, as are the Fossorier–Kobara–Imai speedups [33].

One can object that this class does not include, e.g., attacks that hope for at most p
errors in the information set, or attacks that consider fewer error patterns per iteration at the
expense of success probability. One can object, in the opposite direction, that the conditional
success probability per error pattern inspected is actually a constant factor smaller than the(
k
p

)−1/2
hypothesized above; see generally [32, Appendix A]. A more complicated bound that

accounts for these variations and limitations would be slightly larger than the bound stated
above but would also be more difficult to compute; our view is that a simpler, slightly smaller
bound is more useful. In any event, it is clear that beating this bound would be an astonishing
breakthrough.

Ball-collision decoding 15

References

[1] Carlisle M. Adams, Henk Meijer, Security-related comments regarding McEliece’s public-key cryptosystem,
in Crypto ’87 [60] (1987), 224–228; see also newer version [2]. MR 0956653. Citations in this document:
§4.

[2] Carlisle M. Adams, Henk Meijer, Security-related comments regarding McEliece’s public-key cryptosystem,
IEEE Transactions on Information Theory 35 (1988), 454–455; see also older version [1]. MR 0999658.
Citations in this document: §1, §4.

[3] Abdulrahman Al Jabri, A statistical decoding algorithm for general linear block codes, in IMA 2001 [39]
(2001), 1–8. MR 2074098. Citations in this document: §4.

[4] Alexei E. Ashikhmin, Alexander Barg, Minimal vectors in linear codes, IEEE Transactions on Information
Theory 44 (1998), 2010–2017. Citations in this document: §4.

[5] Alexander Barg, Evgueni A. Krouk, Henk C. A. van Tilborg, On the complexity of minimum distance
decoding of long linear codes, IEEE Transactions on Information Theory 45 (1999), 1392–1405. Citations
in this document: §4.

[6] Lynn Batten, Reihaneh Safavi-Naini (editors), Information security and privacy: 11th Australasian confer-
ence, ACISP 2006, Melbourne, Australia, July 35, 2006, proceedings, Lecture Notes in Computer Science,
4058, Springer, 2006. See [57].

[7] Daniel J. Bernstein, Grover vs. McEliece, in Post-Quantum Cryptography [64] (2010), 72–80. Citations in
this document: §1.

[8] Daniel J. Bernstein, Johannes Buchmann, Erik Dahmen (editors), Post-quantum cryptography, Springer,
2009. ISBN 978-3-540-88701-0. See [58].

[9] Daniel J. Bernstein, Tanja Lange, Christiane Peters, Attacking and defending the McEliece cryptosystem, in
PQCrypto 2008 [13] (2008), 31–46. URL: http://eprint.iacr.org/2008/318. Citations in this document:
§1, §1, §1, §3, §3, §4, §4, §6, §7.

[10] Daniel J. Bernstein, Tanja Lange, Christiane Peters, Henk van Tilborg, Explicit bounds for generic decoding
algorithms for code-based cryptography, in WCC 2009 (2009). Citations in this document: §5, §7.

[11] Thomas A. Berson, Failure of the McEliece public-key cryptosystem under message-resend and related-
message attack, in Crypto ’97 [45] (1997), 213–220. Citations in this document: §1.

[12] Mario Blaum, Patrick G. Farrell, Henk C. A. van Tilborg (editors), Information, coding and mathematics,
Kluwer International Series in Engineering and Computer Science, 687, Kluwer, 2002. MR 2005a:94003.
See [71].

[13] Johannes Buchmann, Jintai Ding (editors), Post-quantum cryptography, second international workshop,
PQCrypto 2008, Cincinnati, OH, USA, October 17-19, 2008, proceedings, Lecture Notes in Computer
Science, 5299, Springer, 2008. See [9].

[14] Paul Camion, Pascale Charpin, Sami Harari (editors), Eurocode ’92: proceedings of the international sym-
posium on coding theory and applications held in Udine, October 23–30, 1992, Springer, 1993. ISBN 3-211-
82519-3. MR 94k:94001. See [20].

[15] Anne Canteaut, Herve Chabanne, A further improvement of the work factor in an attempt at breaking
McEliece’s cryptosystem, in EUROCODE 94 [21] (1994). URL: http://www.inria.fr/rrrt/rr-2227.

html. Citations in this document: §4.

[16] Anne Canteaut, Florent Chabaud, A new algorithm for finding minimum-weight words in a linear code:
application to McEliece’s cryptosystem and to narrow-sense BCH codes of length 511, IEEE Transac-
tions on Information Theory 44 (1998), 367–378. MR 98m:94043. URL: ftp://ftp.inria.fr/INRIA/

tech-reports/RR/RR-2685.ps.gz. Citations in this document: §3, §4.

[17] Anne Canteaut, Nicolas Sendrier, Cryptanalysis of the original McEliece cryptosystem, in Asiacrypt ’98
[56] (1998), 187–199. MR 2000i:94042. Citations in this document: §3, §4.

[18] Aydano B. Carleial, Martin E. Hellman, A note on Wyner’s wiretap channel, in IEEE Transactions on
Information Theory 23 (1977), 387–390. ISSN 0018-9448.

[19] Herve Chabanne, B. Courteau, Application de la méthode de décodage itérative d’Omura à la cryptanalyse
du système de McEliece, Université de Sherbrooke, Rapport de Recherche, number 122 (1993). Citations
in this document: §4.

[20] Florent Chabaud, Asymptotic analysis of probabilistic algorithms for finding short codewords, in [14] (1993),
175–183. MR 95e:94026. Citations in this document: §4.

[21] Pascale Charpin (editor), EUROCODE 94, 1994. See [15].

[22] George C. Clark, Jr., J. Bibb Cain, Error-correcting coding for digital communication, Plenum, 1981. ISBN
0-306-40615-2. Citations in this document: §4.

http://eprint.iacr.org/2008/318
http://www.inria.fr/rrrt/rr-2227.html
http://www.inria.fr/rrrt/rr-2227.html
ftp://ftp.inria.fr/INRIA/tech-reports/RR/RR-2685.ps.gz
ftp://ftp.inria.fr/INRIA/tech-reports/RR/RR-2685.ps.gz

16 D. J. Bernstein, T. Lange, C. Peters

[23] Christophe Clavier, Kris Gaj (editors), Cryptographic hardware and embedded systems — CHES 2009,
11th international workshop, Lausanne, Switzerland, September 6–9, 2009, proceedings, Lecture Notes
in Computer Science, 5747, Springer, 2009. ISBN 978-3-642-04137-2. See [30].

[24] John T. Coffey, Rodney M. Goodman, The complexity of information set decoding, IEEE Transactions on
Information Theory 35 (1990), 1031–1037. Citations in this document: §4.

[25] John T. Coffey, Rodney M. Goodman, P. Farrell, New approaches to reduced complexity decoding, Discrete
and Applied Mathematics 33 (1991), 43–60. Citations in this document: §4, §5.

[26] Gérard D. Cohen, Jacques Wolfmann (editors), Coding theory and applications, Lecture Notes in Computer
Science, 388, Springer, 1989. See [67].

[27] Ilya I. Dumer, Two decoding algorithms for linear codes, Problemy Peredachi Informatsii 25 (1989), 24–32.
Citations in this document: §4.

[28] Ilya I. Dumer, On minimum distance decoding of linear codes, in [44] (1991), 50–52. Citations in this
document: §4.

[29] Cynthia Dwork (editor), Advances in cryptology — CRYPTO 2006, 26th annual international cryptology
conference, Santa Barbara, California, USA, August 20–24, 2006, proceedings, Lecture Notes in Computer
Science, 4117, Springer, 2006. ISBN 3-540-37432-9. See [43].

[30] Thomas Eisenbarth, Tim Güneysu, Stefan Heyse, Christof Paar, MicroEliece: McEliece for embedded de-
vices, in CHES 2009 [23] (2009), 49–64. Citations in this document: §1.

[31] Jean-Charles Faugère, Ayoub Otmani, Ludovic Perret, Jean-Pierre Tillich, Algebraic cryptanalysis of
McEliece variants with compact keys, in Advances in Cryptology – EUROCRYPT 2010 [35] (2010), 279–
298. Citations in this document: §1.

[32] Matthieu Finiasz, Nicolas Sendrier, Security bounds for the design of code-based cryptosystems, in Asiacrypt
2009 [53] (2009). URL: http://eprint.iacr.org/2009/414. Citations in this document: §1, §1, §4, §2, §3,
§7, §7, §8, §8, §8, §8.

[33] Marc P. C. Fossorier, Kazukuni Kobara, Hideki Imai, Modeling bit flipping decoding based on nonorthogonal
check sums with application to iterative decoding attack of McEliece cryptosystem, IEEE Transactions on
Information Theory 53 (2007), 402–411. MR 2007m:94158. Citations in this document: §8.

[34] Valerie Gauthier Umana, Gregor Leander, Practical key recovery attacks on two McEliece variants (2009).
URL: http://eprint.iacr.org/2009/509.pdf. Citations in this document: §1.

[35] Henri Gilbert (editor), Advances in Cryptology — EUROCRYPT 2010, 29th Annual International Con-
ference on the Theory and Applications of Cryptographic Techniques, French Riviera, May 30 - June 3,
2010, proceedings, Lecture Notes in Computer Science, 6110, Springer. ISBN 978-3-642-13189-9. See [31].

[36] Shafi Goldwasser (editor), 35th annual IEEE symposium on the foundations of computer science. Proceed-
ings of the IEEE symposium held in Santa Fe, NM, November 20–22, 1994, IEEE, 1994. ISBN 0-8186-
6580-7. MR 98h:68008. See [65].

[37] Shafi Goldwasser (editor), Advances in cryptology — CRYPTO ’88, proceedings of the conference on the
theory and application of cryptography held at the University of California, Santa Barbara, California,
August 21–25, 1988, Lecture Notes in Computer Science, 403, Springer, 1990. ISBN 3-540-97196-3. MR
90j:94003. See [68].

[38] Christoph G. Günther, Advances in cryptology — EUROCRYPT ’88, proceedings of the workshop on the
theory and application of cryptographic techniques held in Davos, May 25–27, 1988, Lecture Notes in
Computer Science, 330, Springer-Verlag, Berlin, 1988. ISBN 3-540-50251-3. MR 90a:94002. See [50].

[39] Bahram Honary (editor), Cryptography and coding: proceedings of the 8th IMA international conference
held in Cirencester, December 17–19, 2001, Lecture Notes in Computer Science, 2260, Springer, 2001. See
[3].

[40] Michael J. Jacobson Jr., Vincent Rijmen, Reihaneh Safavi-Naini (editors), Selected Areas in Cryptography,
Lecture Notes in Computer Science, 5867, Springer, 2009. See [55].

[41] Thomas Johansson, Fredrik Jonsson, On the complexity of some cryptographic problems based on the
general decoding problem, IEEE Transactions on Information Theory 48 (2002), 2669–2678. URL: http://
www.it.lth.se/cryptology/e-papers/paper054.pdf. Citations in this document: §8.

[42] Antoine Joux, Reynald Lercier, The function field sieve in the medium prime case, in Eurocrypt 2006 [70]
(2006), 254–270. Citations in this document: §1.

[43] Antoine Joux, Reynald Lercier, Nigel P. Smart, Frederik Vercauteren, The number field sieve in the medium
prime case, in Crypto 2006 [29] (2006), 326–344. Citations in this document: §1.

[44] Grigori A. Kabatianskii (editor), Fifth joint Soviet-Swedish international workshop on information theory,
Moscow, 1991, 1991. See [28].

[45] Burton S. Kaliski Jr. (editor), Advances in cryptology — CRYPTO ’97: 17th annual international cryptology
conference, Santa Barbara, California, USA, August 17–21, 1997, proceedings, Lecture Notes in Computer
Science, 1294, Springer, 1997. ISBN 3-540-63384-7. MR 99a:94041. See [11].

http://eprint.iacr.org/2009/414
http://eprint.iacr.org/2009/509.pdf
http://www.it.lth.se/cryptology/e-papers/paper054.pdf
http://www.it.lth.se/cryptology/e-papers/paper054.pdf

Ball-collision decoding 17

[46] Kwangjo Kim (editor), Public key cryptography: proceedings of the 4th international workshop on practice
and theory in public key cryptosystems (PKC 2001) held on Cheju Island, February 13–15, 2001, Lecture
Notes in Computer Science, 1992, Springer, 2001. See [48].

[47] Thorsten Kleinjung, Kazumaro Aoki, Jens Franke, Arjen K. Lenstra, Emmanuel Thomé, Joppe W. Bos,
Pierrick Gaudry, Alexander Kruppa, Peter L. Montgomery, Dag Arne Osvik, Herman te Riele, Andrey
Timofeev, Paul Zimmermann, Factorization of a 768-bit RSA modulus, in CRYPTO 2010 [62] (2010),
333–350. URL: http://eprint.iacr.org/2010/006. Citations in this document: §8.

[48] Kazukuni Kobara, Hideki Imai, Semantically secure McEliece public-key cryptosystems — conversions for
McEliece PKC, in PKC 2001 [46] (2001), 19–35. MR 2003c:94027. Citations in this document: §1.

[49] Evgueni A. Krouk, Decoding complexity bound for linear block codes, Problemy Peredachi Informatsii 25
(1989), 103–107. Citations in this document: §4, §4.

[50] Pil Joong Lee, Ernest F. Brickell, An observation on the security of McEliece’s public-key cryptosystem,
in Eurocrypt ’88 [38] (1988), 275–280. MR 0994669. URL: http://dsns.csie.nctu.edu.tw/research/
crypto/HTML/PDF/E88/275.PDF. Citations in this document: §4.

[51] Arjen K. Lenstra, Hendrik W. Lenstra, Jr. (editors), The development of the number field sieve, Lecture
Notes in Mathematics, 1554, Springer-Verlag, Berlin, 1993. ISBN 3-540-57013-6. MR 96m:11116. Citations
in this document: §3.

[52] Jeffrey S. Leon, A probabilistic algorithm for computing minimum weights of large error-correcting codes,
IEEE Transactions on Information Theory 34 (1988), 1354–1359. MR 89k:94072. Citations in this docu-
ment: §4.

[53] Mitsuru Matsui (editor), Advances in cryptology — ASIACRYPT 2009, 15th international conference on
the theory and application of cryptology and information security, Tokyo, Japan, December 6–10, 2009,
proceedings, Lecture Notes in Computer Science, 5912, Springer, 2009. ISBN 978-3-642-10365-0. See [32].

[54] Robert J. McEliece, A public-key cryptosystem based on algebraic coding theory, JPL DSN Progress Report
(1978), 114–116. URL: http://ipnpr.jpl.nasa.gov/progress_report2/42-44/44N.PDF. Citations in this
document: §1, §4.

[55] Rafael Misoczki, Paulo S. L. M. Barreto, Compact McEliece keys from Goppa codes, in SAC 2009 [40]
(2009), 376–392. Citations in this document: §1.

[56] Kazuo Ohta, Dingyi Pei (editors), Advances in cryptology — ASIACRYPT’98: proceedings of the inter-
national conference on the theory and application of cryptology and information security held in Beijing,
Lecture Notes in Computer Science, 1514, Springer, 1998. ISBN 3-540-65109-8. MR 2000h:94002. See [17].

[57] Raphael Overbeck, Statistical decoding revisited, in ACISP 2006 [6] (2006), 283–294. Citations in this
document: §4.

[58] Raphael Overbeck, Nicolas Sendrier, Code-based cryptography, in [8] (2009), 95–145. Citations in this
document: §2, §4.

[59] Christiane Peters, Information-set decoding for linear codes over Fq, in Post-Quantum Cryptography [64]
(2010), 81–94. Citations in this document: §4, §2.

[60] Carl Pomerance (editor), Advances in cryptology — CRYPTO ’87, proceedings of the conference on the the-
ory and applications of cryptographic techniques held at the University of California, Santa Barbara, Cal-
ifornia, August 16–20, 1987, Lecture Notes in Computer Science, 293, Springer, 1987. ISBN 3-540-18796-
0. MR 89b:68005. URL: http://dsns.csie.nctu.edu.tw/research/crypto/HTML/PDF/C87/224.PDF. See
[1].

[61] Eugene Prange, The use of information sets in decoding cyclic codes, IRE Transactions on Information
Theory IT-8 (1962), S5–S9. Citations in this document: §4.

[62] Tal Rabin (editor), Advances in Cryptology — CRYPTO 2010, 30th Annual Cryptology Conference, Santa
Barbara, CA, USA, August 15-19, 2010, proceedings, Lecture Notes in Computer Science, 6223, Springer,
2010. See [47].

[63] Ronald L. Rivest, Adi Shamir, Leonard M. Adleman, A method for obtaining digital signatures and public-
key cryptosystems, Communications of the ACM 21 (1978), 120–126. ISSN 0001–0782. Citations in this
document: §3.

[64] Nicolas Sendrier (editor), Post-quantum cryptography, third international workshop, PQCrypto, Darmstadt,
Germany, May 25-28, 2010, proceedings, Lecture Notes in Computer Science, 6061, Springer, 2010. See
[7], [59].

[65] Peter W. Shor, Algorithms for quantum computation: discrete logarithms and factoring., in FOCS 1994
[36] (1994), 124–134; see also newer version [66]. MR 1489242. Citations in this document: §1.

[66] Peter W. Shor, Polynomial-time algorithms for prime factorization and discrete logarithms on a quan-
tum computer, SIAM Journal on Computing 26 (1997), 1484–1509; see also older version [65]. MR MR
98i:11108.

http://eprint.iacr.org/2010/006
http://dsns.csie.nctu.edu.tw/research/crypto/HTML/PDF/E88/275.PDF
http://dsns.csie.nctu.edu.tw/research/crypto/HTML/PDF/E88/275.PDF
http://ipnpr.jpl.nasa.gov/progress_report2/42-44/44N.PDF
http://dsns.csie.nctu.edu.tw/research/crypto/HTML/PDF/C87/224.PDF

18 D. J. Bernstein, T. Lange, C. Peters

[67] Jacques Stern, A method for finding codewords of small weight, in [26] (1989), 106–113. Citations in this
document: §3, §3, §4, §4.

[68] Johan van Tilburg, On the McEliece public-key cryptosystem, in Crypto ’88 [37] (1990), 119–131. MR
1046386. Citations in this document: §4.

[69] Johan van Tilburg, Security-analysis of a class of cryptosystems based on linear error-correcting codes,
Ph.D. thesis, Technische Universiteit Eindhoven, 1994. ISBN 90-72125-45-2. MR 95k:94025. Citations in
this document: §4.

[70] Serge Vaudenay (editor), Advances in cryptology — EUROCRYPT 2006, 25th annual international con-
ference on the theory and applications of cryptographic techniques, St. Petersburg, Russia, May 28–June
1, 2006, proceedings, Lecture Notes in Computer Science, 4004, Springer, 2006. ISBN 3-540-34546-9. See
[42].

[71] Eric R. Verheul, Jeroen M. Doumen, Henk C. A. van Tilborg, Sloppy Alice attacks! Adaptive chosen cipher-
text attacks on the McEliece public-key cryptosystem, in [12] (2002), 99–119. MR 2005b:94041. Citations
in this document: §1.

A Proof of suboptimality of Q = 0 (Theorem 7.1)

This appendix shows that, for each pair (W,R) within the range considered in Section 7,
there are asymptotic parameters (P,Q,L) for ball-collision decoding whose cost exponents are
smaller than the minimum collision-decoding-cost exponent, i.e., smaller than the minimum
cost exponent for parameters (P, 0, L).

Input space and parameter space. Throughout this appendix W and R are real numbers
with 0 < W < 1/2 and −W log2W − (1−W) log2(1−W) ≤ 1−R < 1.

The parameter space is the set of vectors (P,Q,L) of real numbers satisfying 0 ≤ P ≤ R/2,
0 ≤ Q ≤ L, and 0 ≤ W − 2P − 2Q ≤ 1 − R − 2L. This parameter space depends implicitly
on W and R.

Section 7 considers codes of length n and dimension k, and errors of weight w, where
n → ∞, k/n → R, and w/n → W . The ball-collision parameters p1, p2, q1, q2, k1, k2, `1, `2
satisfy pi/n → P , qi/n → Q, ki/n → R/2, and `i/n → L. The proof does not rely on this
coding-theoretic interpretation of W,R,P,Q,L, but readers already familiar with collision
decoding may find the interpretation helpful in understanding Lemma A.1 below.

Cost exponent for collision decoding. Most of the proof consists of analyzing the asymp-
totic cost exponent D(P, 0, L) for collision decoding, namely

max{−(R/2) log2(R/2) + P log2 P + (R/2− P) log2(R/2− P),−2L}
−W log2W − (1−W) log2(1−W)− (1−R− 2L) log2(1−R− 2L)

+ (W − 2P) log2(W − 2P) + (1−R− 2L− (W − 2P)) log2(1−R− 2L− (W − 2P)).

As mentioned earlier, D(P, 0, L) is a continuous function of the parameters (P, 0, L), and the
parameter space is compact, so there exist optimal collision-decoding parameters (P, 0, L),
i.e., parameters that achieve the infimum of collision-decoding costs. This does not imply,
and the proof of Theorem 7.1 does not use, uniqueness of the optimal parameters.

Optimal collision-decoding parameters. The proof that ball-collision decoding beats col-
lision decoding relies on the following three facts about optimal collision-decoding parameters
(P, 0, L):

Lemma A.1 If (P,L) are optimal collision-decoding parameters than

0 < L; 0 < W − 2P ; and W − 2P < (1−R− 2L)/2.

Ball-collision decoding 19

In other words, the collision space F`1+`22 is asymptotically quite large, and the uncon-
trolled n− k1 − k2 − `1 − `2 positions include asymptotically many error positions, although
asymptotically more non-error positions than error positions.

We do not claim that the three facts in Lemma A.1 are news to the many authors who
have written previous papers on collision decoding. However, we have not found proofs of
these facts in the literature, so for completeness we include proofs here.

The proofs do not require any background in coding theory. The main tool is nothing
more than basic calculus. In order to study the growth of the collision-cost exponent induced
by an increase or decrease in the values of P and L, we use the Taylor-series expansion of
the logarithm function: for example, a term such as (L + ε) log2(L + ε) has series expansion
L log2 L+ ε log2(eL) +O(ε2) around ε = 0. Here e = exp(1) is Euler’s constant. Beware that
extra work is required in moving away from corners of the parameter space: for example,
L log2 L is not differentiable at L = 0.

How to improve upon optimal collision-decoding parameters. Before proving the
three parts of Lemma A.1 we show how to deduce Theorem 7.1 from Lemma A.1. The proof
is constructive, showing how to slightly adjust optimal parameters for collision decoding to
obtain better parameters for ball-collision decoding.

Proof (of Theorem 7.1). Start with optimal collision-decoding parameters (P, 0, L). Now con-
sider the impact of increasing Q from 0 to δ and increasing L by −(1/2)δ log2 δ, for very small
δ. Of course, the increase in Q requires generalizing from collision decoding to ball-collision
decoding. Lemma A.1 says that optimal collision-decoding parameters (P, 0, L) must have
0 < L and 0 < W − 2P < (1−R− 2L)/2; consequently the parameter space has room for Q
and L to increase.

The quantity L log2 L − Q log2Q − (L − Q) log2(L − Q) increases by −δ log2 δ + O(δ),
and 2L log2 L − 2Q log2Q − 2(L − Q) log2(L − Q) − 2L also increases by −δ log2 δ + O(δ).
The iteration-cost exponent therefore increases by −δ log2 δ + O(δ). The success-probability
exponent increases by δ log2 δ log2(e(1−R− 2L))− δ log2 δ log2(e(1−R− 2L− (W − 2P)))−
2δ log2 δ + O(δ). The total cost exponent therefore increases by (δ log2 δ)(1 + log2(1 − R −
2L− (W − 2P))− log2(1−R− 2L)) +O(δ).

Rewrite W−2P < (1−R−2L)/2 as 1+log2(1−R−2L−(W−2P))−log2(1−R−2L) > 0,
and deduce that the increase in the cost exponent is negative for all sufficiently small δ > 0;
note here that log2 δ is negative, and that O(δ)/(δ log2 δ) → 0 as δ → 0. Consequently the
optimal collision-decoding parameters (P, 0, L) are beaten by (P, δ, L − (1/2)δ log2 δ) for all
sufficiently small δ > 0. ut

How to optimize collision decoding. We build up to Lemma A.1 using several lemmas.
The first lemma requires the most difficult calculation, establishing a useful inequality. The
next three lemmas show that optimal collision-decoding parameters (P,L) can never have
L = 0: Lemma A.3 covers the case P = 0; Lemma A.4 covers the case P = R/2; Lemma A.5
covers the intermediate cases 0 < P < R/2. Each of the proofs is constructive, showing how
to move from (P, 0) to better collision-decoding parameters.

The next two lemmas show similarly that optimal collision-decoding parameters (P,L)
cannot have 0 = W−2P = 1−R−2L, and cannot have 0 = W−2P < 1−R−2L, so they must
have 0 < W −2P . Proving Lemma A.1 then boils down to proving W −2P < (1−R−2L)/2;
that proof concludes the appendix.

20 D. J. Bernstein, T. Lange, C. Peters

If (P ′, 0, L′) and (P, 0, L) are in the parameter space and D(P ′, 0, L′) < D(P, 0, L) then
we say that (P ′, L′) improves upon (P,L). We also say that (P ′, L′) improves upon (P,L) in
the vacuous case that (P, 0, L) is not in the parameter space.

Lemma A.2 Each (P, 0, L) in the parameter space satisfies

1−R− ((R/2) log2(R/2)− P log2 P − (R/2− P) log2(R/2− P)) > 2W.

Proof. The proof proceeds in two steps. The first step handles 0.1 < W < 0.5. The second
step handles 0 < W ≤ 0.1.

Recall that 1 − R ≥ −W log2W − (1 − W) log2(1 − W). Hence 1 − (3/2)R − 2W ≥
−(1/2)−2W − (3/2)W log2W − (3/2)(1−W) log2(1−W). The values of this lower bound at
0.1, 0.3, 0.5 are ≈ 0.0034,≈ 0.2218, 0 respectively; the derivative of the lower bound is −2 −
(3/2) log2(eW)+(3/2) log2(e(1−W)), which has a unique zero at W = 1/(1+24/3) ≈ 0.2841;
so the lower bound is positive for all W with 0.1 < W < 0.5. In particular 2W < 1− (3/2)R
if 0.1 < W < 0.5.

The maximum possible value of (R/2) log2(R/2) − P log2 P − (R/2 − P) log2(R/2 − P)
is (R/2) log2(R/2) − 2(R/4) log2(R/4) = R/2, so 1 − R − ((R/2) log2(R/2) − P log2 P −
(R/2 − P) log2(R/2 − P)) ≥ 1 − (3/2)R > 2W if 0.1 < W < 0.5. This concludes the case
0.1 < W < 0.5.

From now on assume 0 < W ≤ 0.1. Abbreviate (1+W log2W +(1−W) log2(1−W))/2 as
G. Then G−W has derivative (1/2) log2(eW)−(1/2) log2(e(1−W))−1 < 0 for 0 < W ≤ 0.1,
and value 0.1655 . . . > 0 at W = 0.1, so G > W for 0 ≤W ≤ 0.1.

Furthermore R/2 ≤ G by definition of G and the parameter space. So (R/2) log2(R/2)−
P log2 P − (R/2− P) log2(R/2− P) ≤ G log2G− P log2 P − (G− P) log2(G− P); note that
for any fixed c > 0 and x > c the function x log2 x − (x − c) log2(x − c) is increasing (check
its derivative).

The parameter space forces P ≤W/2 < G/2 so G log2G−P log2 P−(G−P) log2(G−P) ≤
G log2G− (W/2) log2(W/2)− (G− (W/2)) log2(G− (W/2)).

Consequently using these inequalities and R ≤ 2G one yields 1−R− ((R/2) log2(R/2)−
P log2 P−(R/2−P) log2(R/2−P)) ≥ 1−R−(G log2G−(W/2) log2(W/2)−(G−(W/2)) log2(G−
(W/2))) ≥ (−W log2W)X where

X =
1− 2G−G log2G+ (W/2) log2(W/2) + (G− (W/2)) log2(G− (W/2))

−W log2W

=
1

2
+
−(1−W) log2(1−W)−G log2G− (W/2) + (G− (W/2)) log2(G− (W/2))

−W log2W

=
1

2
+

1−W
log2W

log2(1−W)

W
+

G

log2W

log2G− log2(G− (W/2))

W
+

1 + log2(G− (W/2))

2 log2W

Each of the ratios here is continuous for 0 ≤ W ≤ 0.1. A straightforward interval-arithmetic
calculation shows that X ≥ 0.5 for 0 ≤ W ≤ 0.05, implying (−W log2W)X > 2W for
0 < W ≤ 0.05, and that X ≥ 0.7 for 0.05 ≤ W ≤ 0.1, implying (−W log2W)X > 2W for
0.05 < W ≤ 0.1. Therefore 1−R− ((R/2) log2(R/2)−P log2 P − (R/2−P) log2(R/2−P)) >
2W in all cases. ut

Lemma A.3 There is a real number δ > 0 such that (δ,−(1/2)δ log2 δ) improves upon (0, 0).

Ball-collision decoding 21

Proof. The parameters (P,L) = (δ,−(1/2)δ log2 δ) satisfy the constraints 0 ≤ P ≤ R/2,
0 ≤ L, and 0 ≤W −2P ≤ 1−R−2L for all sufficiently small real numbers δ ≥ 0, since 0 < R
and 0 < W . The collision-cost exponent is max{δ log2 δ +O(δ), δ log2 δ}−(1−W) log2(1−W)−
(1−R) log2(1−R)+(1−R−W) log2(1−R−W)−(δ log2 δ) log2(e(1−R))+(δ log2 δ) log2(e(1−
R−W)) +O(δ) = −(1−W) log2(1−W)− (1−R) log2(1−R) + (1−R−W) log2(1−R−
W) + (δ log2 δ)(1 + log2(1−R−W)− log2(1−R)) +O(δ). The inequality 2W < 1−R implies
1 + log2(1−R−W)− log2(1−R) > 0, so (δ log2 δ)(1 + log2(1−R−W)− log2(1−R)) +O(δ)
is negative for all sufficiently small δ > 0, improving upon (0, 0). ut

Lemma A.4 There is a real number δ > 0 such that (R/2− δ,−(1/2)δ log2 δ) improves upon
(R/2, 0).

Proof. If W < R then (R/2, 0, 0) is outside the parameter space so the conclusion is vacuously
satisfied. Assume from now on that W ≥ R.

The parameters (P,L) = (R/2 − δ,−(1/2)δ log2 δ). satisfy the constraints 0 ≤ P ≤ R/2,
0 ≤ L, and 0 ≤ W − 2P ≤ 1 − R − 2L for all sufficiently small real numbers δ ≥ 0. The
iteration-cost exponent is max{δ log2 δ +O(δ), δ log2 δ} −W log2W − (1 − R) log2(1 − R) +
(W −R+ 2δ) log2(W −R+ 2δ)− (δ log2 δ) log2(e(1−R)) + (δ log2 δ) log2(e(1−W)) +O(δ) =
−W log2W − (1−R) log2(1−R) + (W −R+ 2δ) log2(W −R+ 2δ) + (δ log2 δ)(1 + log2(1−
W)− log2(1−R)) +O(δ).

If W = R then (W − R + 2δ) log2(W − R + 2δ) + (δ log2 δ)(1 + log2(1 −W) − log2(1 −
R)) +O(δ) = 3δ log2 δ +O(δ). This is negative for all sufficiently small δ > 0.

Otherwise W > R so (W −R+2δ) log2(W −R+2δ)+(δ log2 δ)(1+log2(1−W)− log2(1−
R)) + O(δ) = (δ log2 δ)(1 + log2(1 −W) − log2(1 − R)) + O(δ). This is also negative for all
sufficiently small δ > 0: recall that 2(1−W) > 1 > 1−R, so the coefficient 1 + log2(1−W)−
log2(1−R) is positive.

Either way (P,L) = (R/2− δ,−(1/2)δ log2 δ) improves upon (R/2, 0). ut

Lemma A.5 If 0 < P < R/2 then there is a real number δ > 0 such that (P, δ) improves
upon (P, 0).

Proof. Consider the impact of changing L from 0 to δ. The quantity −(R/2) log2(R/2) +
P log2 P + (R/2 − P) log2(R/2 − P) is negative and unchanged, and −2L changes from 0
to −2δ, so max{−(R/2) log2(R/2) + P log2 P + (R/2− P) log2(R/2− P),−2L} increases by
−2δ if δ is sufficiently small. The quantity −(1 − R − 2L) log2(1 − R − 2L) increases by
2δ log2(e(1−R)) +O(δ2). The quantity (1−R−2L− (W −2P)) log2(1−R−2L− (W −2P))
increases by −2δ log2(e(1−R− (W − 2P))) +O(δ2).

The total collision-cost exponent increases by 2δ(−1 + log2(1 − R) − log2(1 − R − (W −
2P))) + O(δ2). The coefficient −1 + log2(1− R)− log2(1− R − (W − 2P)) is negative since
W − 2P < (1−R)/2. Hence (P, δ) improves upon (P, 0) for all sufficiently small δ > 0. ut

Lemma A.6 There is a real number c ≥ 2 satisfying the following condition: if W < R then
c log2 c − (c − 1) log2(c − 1) > (1/2)(log2(R −W) − log2W). For any such c there is a real
number δ > 0 such that ((W − δ)/2, (1−R− cδ)/2) improves upon (W/2, (1−R)/2).

Proof. If W > R then (W/2, (1 − R)/2) is outside the parameter space and the conclusions
are vacuously satisfied for, e.g., c = 2 and δ = 1. Assume from now on that W ≤ R.

22 D. J. Bernstein, T. Lange, C. Peters

Choose a real number c large enough to meet both of the following constraints: first, c ≥ 2;
second, if W < R then c log2 c− (c− 1) log2(c− 1) > (1/2)(log2(R−W)− log2W). This can
always be done: c log2 c− (c− 1) log2(c− 1)→∞ as c→∞.

Consider the impact of changing L from (1−R)/2 to (1−R−cδ)/2, and at the same time
changing P from W/2 to (W −δ)/2. This change fits the parameter constraints for sufficiently
small δ > 0.

The quantity −(1−R− 2L) log2(1−R− 2L) changes from 0 to −cδ log2(cδ). The quan-
tity (W − 2P) log2(W − 2P) changes from 0 to δ log2 δ. The quantity (1 − R − 2L − (W −
2P)) log2(1 − R − 2L − (W − 2P)) changes from 0 to (c − 1)δ log2((c − 1)δ). The quantity
max{−(R/2) log2(R/2) + P log2 P + (R/2− P) log2(R/2− P),−2L} is dominated by its first
term since 2L = 1− R > 2W + ((R/2) log2(R/2)− P log2 P − (R/2− P) log2(R/2− P)) by
Lemma A.2.

It thus increases by ((W−δ)/2) log2((W−δ)/2)−(W/2) log2(W/2)+((R−W+δ)/2) log2((R−
W + δ)/2)− ((R−W)/2) log2((R−W)/2).

The total cost exponent increases by δ((c−1) log2(c−1)−c log2 c)+((W−δ)/2) log2((W−
δ)/2)−(W/2) log2(W/2)+((R−W+δ)/2) log2((R−W+δ)/2)−((R−W)/2) log2((R−W)/2).

If W = R then this increase is (δ/2) log2(δ/2) + O(δ) and is therefore negative for all
sufficiently small δ > 0.

If W < R then this increase is ((c − 1) log2(c − 1) − c log2 c + (1/2)(log2(e(R −W)/2) −
log2(eW/2)))δ+O(δ2), The coefficient of δ is negative by choice of c, so the increase is negative
for all sufficiently small δ > 0.

In all cases ((W − δ)/2, (1−R− cδ)/2) improves upon (W/2, (1−R)/2). ut

Lemma A.7 Assume that 0 < 1 − R − 2L. Then there is a real number δ > 0 such that
((W − δ)/2, L) improves upon (W/2, L).

Proof. Consider collision-decoding parameters (P,L) with 0 = W − 2P < 1 − R − 2L. As
before P ≤ R/2 forces W ≤ R.

Consider the impact of changing P from W/2 to (W−δ)/2. This change fits the parameter
constraints for sufficiently small δ > 0.

The quantity (W − 2P) log2(W − 2P) increases by δ log2 δ. The quantity (1 − R − 2L −
(W − 2P)) log2(1−R− 2L− (W − 2P)) increases by O(δ). The quantity

max{−(R/2) log2(R/2) + P log2 P + (R/2− P) log2(R/2− P),−2L}

increases by something between 0 and ((W −δ)/2) log2((W −δ)/2)−(W/2) log2(W/2)+((R−
W +δ)/2) log2((R−W +δ)/2− ((R−W)/2) log2((R−W)/2), which is (δ/2) log2(δ/2)+O(δ)
if W = R and O(δ) if W < R. The total increase in the cost is between δ log2 δ + O(δ) and
(3/2)δ log2 δ +O(δ), and is therefore negative for all sufficiently small δ > 0. ut

Proof (of Lemma A.1). The hypothesis is that (P,L) minimizes D(P, 0, L), i.e., that nothing
improves upon (P,L).

The definition of the parameter space implies L ≥ 0. Suppose that L = 0. Then P < 0
would contradict the definition of the parameter space; P = 0 would contradict Lemma A.3;
0 < P < R/2 would contradict Lemma A.5; P = R/2 would contradict Lemma A.4; and
P > R/2 would contradict the definition of the parameter space. Hence L > 0.

The definition of the parameter space also implies 0 ≤W −2P . Suppose that 0 = W −2P .
Then 0 = 1 − R − 2L would force (P,L) = (W/2, (1 − R)/2), contradicting Lemma A.6;

Ball-collision decoding 23

0 < 1 − R − 2L would contradict Lemma A.7; and 0 > 1 − R − 2L would contradict the
definition of the parameter space. Hence 0 < W − 2P .

Suppose that 2L > (R/2) log2(R/2)− P log2 P − (R/2− P) log2(R/2− P). Consider the
impact of decreasing L by δ. The quantity

max{−(R/2) log2(R/2) + P log2 P + (R/2− P) log2(R/2− P),−2L}

is dominated by the first term, so it is unchanged for sufficiently small δ. The total cost
decreases by (2 log2(1−R− 2L)− 2 log2(1−R− 2L− (W − 2P)))δ+O(δ2), contradicting the
optimality of (P,L); note that the coefficient 2 log2(1−R−2L)−2 log2(1−R−2L−(W−2P))
is positive since W − 2P > 0.

Therefore 2L ≤ (R/2) log2(R/2)−P log2 P − (R/2−P) log2(R/2−P), and 1−R− 2L >
2W ≥ 2(W − 2P) as claimed. ut

