
REDUCING LATTICE BASES

TO FIND SMALL-HEIGHT VALUES

OF UNIVARIATE POLYNOMIALS

DANIEL J. BERNSTEIN

Abstract. This paper generalizes several previous results on finding divisors
in residue classes (Lenstra, Konyagin, Pomerance, Coppersmith, Howgrave-
Graham, Nagaraj), finding divisors in intervals (Rivest, Shamir, Coppersmith,
Howgrave-Graham), finding modular roots (Hastad, Vallée, Girault, Toffin,

Coppersmith, Howgrave-Graham), finding high-power divisors (Boneh, Durfee,
Howgrave-Graham), and finding codeword errors beyond half distance (Sudan,
Guruswami, Goldreich, Ron, Boneh) into a unified algorithm that, given f and
g, finds all rational numbers r such that f(r) and g(r) both have small height.

1. Introduction

Consider the fraction (r3−s)/n, where n is a large integer with no known factors.
Usually there is no cancellation between the numerator r3−s and the denominator
n. In other words, the height of (r3 − s)/n is usually max

{
∣

∣r3 − s
∣

∣ , n
}

. Here the
height of a rational number m/n is, by definition, max{|m| , |n|}/ gcd{m,n}.

However, if r is a cube root of s modulo n, then one can remove n from both
the numerator and denominator. In other words, the height of (r3 − s)/n is only
max

{
∣

∣(r3 − s)/n
∣

∣ , 1
}

. The problem of finding a cube root of s modulo n can thus

be viewed as the problem of finding small-height values of the polynomial (x3−s)/n.
Many other useful properties of numbers r can be recast in the form “f(r) has

small height” for various polynomials f . For example, the problem of factoring n
can be viewed as the problem of finding all r such that r/n has small height.

There is a surprisingly fast method, using lattice-basis reduction, to find all
numbers r such that both r and f(r) have small height. This paper presents a
very general statement of the method (see Theorem 2.3); asymptotically optimal
parameters (see Section 3); and an exposition of various applications of the method
(see Sections 4, 5, and 7). The theorems and algorithms can easily be switched
from Q to the rational function field Fq(t) over a finite field Fq, although better
algorithms are often available in the function-field case.

I have made no attempt to cover analogous methods for higher-degree global
fields or for polynomials in more variables. There are several papers on small-
height values of bivariate polynomials, but each application seems to pose a new
optimization problem. I will leave it to future writers to unify the literature on this
topic.

Date: 2006.05.31. Permanent ID of this document: 82f82c041b7e2bdce94a5e1f94511773.
2000 Mathematics Subject Classification. Primary 11Y16. Secondary 94B35.
The author was supported by the National Science Foundation under grant DMS–0140542,

and by the Alfred P. Sloan Foundation.

1

2 DANIEL J. BERNSTEIN

History. The following table fits previous results into the framework of Theorem
2.3. Notation: f is the polynomial with useful small-height values; d is the degree
of f ; m is the lattice rank; k is the highest f exponent used in defining the lattice.
Results improve primarily as m increases, secondarily as k increases.

Find f(r) k m Notes
divisors, in
u + vZ, of n

(r + uw)/n
where
wv ∈ 1 + nZ

1 3 1984 Lenstra [24], for proving
primality

divisors, in an
interval, of n

(r + w)/n
for one w

1 3 1986 Rivest Shamir [31], for
breaking cryptosystems;
independent of [24]

roots of p(x)
mod n

p(r)/n 1 d+1 1988 H̊astad [18, Section 3]; first use
of nonlinear f ; independently: 1989
Vallée Girault Toffin [34] (using the
dual lattice; more difficult)

roots of p(x)
mod n

p(r)/n big big 1996 Coppersmith [8] (using dual),
for breaking cryptosystems; first
use of increasing m; first use of
increasing k; simplified: 1997
Howgrave-Graham [19] (explicitly
avoiding dual)

divisors, in an
interval, of n

(r + w)/n big big 1996 Coppersmith [9] (in a much
more complicated way); simplified:
1997 Howgrave-Graham [19]

divisors, in
1 + vZ, of n

(r + w)/n 2 5 1997 Konyagin Pomerance [22,
Algorithm 3.2]; independent of [8]

divisors, in
u + vZ, of n

(r + uw)/n big big 1998 Coppersmith
Howgrave-Graham Nagaraj [20,
Section 5.5]

large values of
gcd{x + w,n}

(r + w)/n 1 big 1999 Goldreich Ron Sudan [14]
(using dual), for error correction;
previous function-field version:
1997 Sudan [33]; independent of [8]

high-power
divisors, in an
interval, of n

(r + w)d/n big big 1999 Boneh Durfee
Howgrave-Graham [7]

large values of
gcd{x + w,n}

(r + w)/n big big 2000 Boneh [5], for error correction;
independently: 2001
Howgrave-Graham [21, Section 3];
previous function-field version:
1999 Guruswami Sudan [17]

large values of
gcd{p(x), n}

p(r)/n big big 2000 Boneh [5, Section 4]

It was recognized in [19] and [7] that “r + w divides n” and “(r + w)d divides n”
could be handled by the same technique as “p(r) is divisible by n.” Meanwhile,
“gcd{r + w,n} is large” appeared independently in [14]. A unified “gcd{p(r), n} is
large” algorithm finally appeared, with insufficient fanfare, in [5, Section 4].

REDUCING LATTICE BASES TO FIND SMALL-HEIGHT VALUES OF POLYNOMIALS 3

Index of theorems in this paper. Algorithms in this paper are expressed in
two ways: as theorems stating that the algorithms produce the desired results,
and as “cost” theorems stating that there exist low-cost algorithms (in a particular
cost measure) producing the desired results. Readers who want to understand what
the algorithms achieve, without worrying at first about how the algorithms work,
should start with the cost theorems, such as Theorem 4.4.

The following chart has three rows for algorithms aimed at specific applications:
“roots mod n,” “divisors of n,” and “codeword errors.” It also has two rows for
more general algorithms that can be used for other applications: an “f(r), g(r) ∈ Z”
row generalizing “roots mod n,” and a “g(r) ∈ Z” row generalizing all of these
applications.

Algorithms in the “any k; any m” column have two parameters (k,m) affecting
their speed and output; the user can tune these parameters for the application
at hand. Algorithms in the “good k; good m” column fix choices of (k,m) that
work reasonably well for a wide variety of applications, although they are often not
exactly optimal. Readers who find themselves overwhelmed by the flexibility of k
and m should start with the algorithms in the “good k; good m” column.

4.1

##G

G

G

G

G

G

G

// 4.2

##G

G

G

G

G

G

G

roots mod n

4.3 // 4.4

2.4 //

##G

G

G

G

G

G

G

3.3 //

##G

G

G

G

G

G

G

OO

3.4

##G

G

G

G

G

G

G

OO

f(r), g(r) ∈ Z

2.6 // 3.7 //

OO

3.8

OO

any k; any m

##G

G

G

G

G

G

G

any k; good m

##G

G

G

G

G

G

G

good k; good m

##G

G

G

G

G

G

G

cost cost cost

5.1

##G

G

G

G

G

G

G

// 5.2

##G

G

G

G

G

G

G

divisors of n

5.3 // 5.4

2.3 //

##G

G

G

G

G

G

G

@@

3.1 //

##G

G

G

G

G

G

G

��

OO

3.2

##G

G

G

G

G

G

G

��

OO

g(r) ∈ Z

2.5 // 3.5 //

��

OO

3.6

��

OO

7.1

##G

G

G

G

G

G

G

// 7.2

##G

G

G

G

G

G

G

codeword errors

7.3 // 7.4

4 DANIEL J. BERNSTEIN

2. The general method

This section explains how to find all rational numbers r such that f(r) and
g(r) simultaneously have small height. Here f, g ∈ Q[x] are polynomials, each of
positive degree, each with positive leading coefficient. Write d = deg f , and assume
for simplicity that deg g = 1.

Theorem 2.2 below gives a more precise definition of “small height.” The height
bound depends on two integer parameters k ≥ 1 and m ≥ dk +1. A typical special
case is k = 1 and m = 2d. See Section 3 for further comments on the choice of k
and m.

The lattice. Define L ⊂ Q[x] as the Z-module

Z + Zg + Zg2 + · · · + Zgd−1

+ Zf + Zgf + Zg2f + · · · + Zgd−1f

+ Zf2 + Zgf2 + Zg2f2 + · · · + Zgd−1f2

+ · · ·
+ Zfk−1 + Zgfk−1 + Zg2fk−1 + · · · + Zgd−1fk−1

+ Zfk + · · · + Zgm−dk−1fk.

For example, if k = 1 and m = d + 1, then L = Z + Zg + Zg2 + · · · + Zgd−1 + Zf ;
if k = 1 and m = 2d, then L = Z + Zg + Zg2 + · · · + Zgd−1 + Zf + · · · + Zgd−1f .

The basis elements 1, g, . . . , gd−1, f, . . . , gm−dk−1fk have degrees 0, 1, 2, . . . ,m−1
respectively. Thus L is a lattice of rank m under the usual coefficient-vector metric
on Q[x], namely ϕ 7→ |ϕ| =

√

ϕ2
0 + ϕ2

1 + ϕ2
2 + · · ·, where ϕ = ϕ0 +ϕ1x+ϕ2x

2+ · · · .
The basis elements have leading coefficients 1, g1, g

2
1 , . . . , gm−dk−1

1 fk
d , where g1 is

the leading coefficient of g and fd is the leading coefficient of f . Thus

detL = g
kd(d−1)/2+(m−dk)(m−dk−1)/2
1 f

dk(k−1)/2+k(m−dk)
d

= g
m(m−1)/2
1 (gd

1/fd)
dk(k+1)/2−mk.

For example, if k = 1 and m = 2d, then detL = g
d(d−1)
1 fd

d = g
d(2d−1)
1 (gd

1/fd)
−d.

Theorem 2.1. Let d, k,m be positive integers with m ≥ dk + 1. Let f ∈ Q[x] be a

polynomial of degree d with leading coefficient fd > 0. Let g ∈ Q[x] be a polynomial

of degree 1 with leading coefficient g1 > 0. Define L as above. If ϕ ∈ L, r ∈ Q, and

gcd{1, f(r)}k
gcd{1, g(r)}max{d−1,m−dk−1}

>
∣

∣(1, r, . . . , rm−1)
∣

∣ |ϕ|, then ϕ(r) = 0.

For example, if k = 1, m = 2d, ϕ ∈ L, r ∈ Q, and gcd{1, f(r)} gcd{1, g(r)}d−1
>

∣

∣(1, r, . . . , r2d−1)
∣

∣ |ϕ|, then ϕ(r) = 0.
The reader should interpret gcd{1, f(r)} > · · · as “f(r) has small denominator”;

gcd{1, g(r)} > · · · as “g(r) has small denominator”; and
∣

∣(1, r, . . . , rm−1)
∣

∣ < · · · as
“f(r) and g(r) have small numerators.” Theorem 2.1 can thus be summarized as
“ϕ(r) = 0 if f(r) and g(r) both have small height.”

Proof. |ϕ(r)| ≤
∣

∣(1, r, . . . , rm−1)
∣

∣ |ϕ| < gcd{1, f(r)}k
gcd{1, g(r)}max{d−1,m−dk−1}

.

But ϕ ∈ Z + Zg + · · · + Zgd−1fk−1 + Zfk + · · · + Zgm−dk−1fk by definition of L,
so ϕ(r) ∈ Z+Zg(r)+ · · ·+Zg(r)d−1f(r)k−1 +Zf(r)k + · · ·+Zg(r)m−dk−1f(r)k ⊆
Z gcd{1, f(r)}k

gcd{1, g(r)}max{d−1,m−dk−1}
. Thus ϕ(r) = 0. �

REDUCING LATTICE BASES TO FIND SMALL-HEIGHT VALUES OF POLYNOMIALS 5

Theorem 2.2. Let d, k,m be positive integers with m ≥ dk + 1. Let f ∈ Q[x] be a

polynomial of degree d with leading coefficient fd > 0. Let g ∈ Q[x] be a polynomial

of degree 1 with leading coefficient g1 > 0. Define L as above. Let ϕ ∈ L be a

nonzero vector such that |ϕ| ≤ 2(m−1)/2(det L)1/m. If r ∈ Q and

gcd{1, f(r)}k
gcd{1, g(r)}max{d−1,m−dk−1}

>
∣

∣(1, r, . . . , rm−1)
∣

∣ (2g1)
(m−1)/2(gd

1/fd)
dk(k+1)/2m−k

then ϕ(r) = 0.

Proof. (detL)1/m = g
(m−1)/2
1 (gd

1/fd)
dk(k+1)/2m−k. Apply Theorem 2.1. �

For example, if k = 1 and m = 2d, then ϕ(r) = 0 for every r ∈ Q such that

gcd{1, f(r)} gcd{1, g(r)}d−1
>

∣

∣(1, r, . . . , r2d−1)
∣

∣ (2g1)
d−1/2(gd

1/fd)
−1/2.

Theorem 2.3. Let d, k,m be positive integers with m ≥ dk + 1. Let f ∈ Q[x]
be a polynomial of degree d with leading coefficient fd > 0. Let g ∈ Q[x] be a

polynomial of degree 1 with leading coefficient g1 > 0. Define L as above. Let

ϕ ∈ L be a nonzero vector such that |ϕ| ≤ 2(m−1)/2(det L)1/m. Define γ =
m1/2k(2g1)

(m−1)/2k(gd
1/fd)

d(k+1)/2m−1. If r ∈ Q, |r| ≤ 1, gcd{1, f(r)} > γ, and

g(r) ∈ Z, then ϕ(r) = 0.

For example, if k = 1 and m = 2d, then ϕ(r) = 0 for every r ∈ Q such that
|r| ≤ 1, g(r) ∈ Z, and gcd{1, f(r)} > γ, where γ = (2d)1/2(2g1)

d−1/2(gd
1/fd)

−1/2.

Proof. γk = m1/2(2g1)
(m−1)/2(gd

1/fd)
dk(k+1)/2m−k;

∣

∣(1, r, . . . , rm−1)
∣

∣ ≤ m1/2; and
gcd{1, g(r)} = 1. Apply Theorem 2.2. �

Theorem 2.4. Let d, k,m be positive integers with m ≥ dk + 1. Let f ∈ Q[x]
be a polynomial of degree d with leading coefficient fd > 0. Let g ∈ Q[x] be a

polynomial of degree 1 with leading coefficient g1 > 0. Define L as above. Let

ϕ ∈ L be a nonzero vector such that |ϕ| ≤ 2(m−1)/2(detL)1/m. Assume that g1 <
(gd

1/fd)
2k/(m−1)−dk(k+1)/m(m−1)/2m1/(m−1). If r ∈ Q, |r| ≤ 1, f(r) ∈ Z, and

g(r) ∈ Z, then ϕ(r) = 0.

For example, if k = 1 and m = 2d, then ϕ(r) = 0 for every r ∈ Q such that
|r| ≤ 1, f(r) ∈ Z, and g(r) ∈ Z, provided that 2g1 < (gd

1/2dfd)
1/(2d−1).

Proof. By assumption m1/2k(2g1)
(m−1)/2k(gd

1/fd)
d(k+1)/2m−1 < 1 = gcd{1, f(r)}.

Apply Theorem 2.3. �

Computation. It is easy to compute the rational numbers r identified in Theorems
2.2, 2.3, and 2.4:

• Feed the basis vectors 1, g, . . . , gd−1, f, . . . , gm−dk−1fk of L to a lattice-
basis-reduction algorithm, such as the Lenstra-Lenstra-Lovasz algorithm,
to obtain a nonzero vector ϕ ∈ L such that |ϕ| ≤ 2(m−1)/2(detL)1/m. See
[23] or [25]. The theorems now state that all desired numbers r are roots
of ϕ.

• Compute the rational roots of ϕ, by approximating the real (or 2-adic)
roots of ϕ to high precision. See, e.g., [26]. By construction ϕ has degree
at most m − 1, so it has at most m − 1 roots.

• Check each root r to see whether it satisfies the stated conditions.

6 DANIEL J. BERNSTEIN

Each step is reasonably fast if f , g, k, and m are reasonably small.
One way to measure the complexity of this algorithm is to measure its output

size, i.e., to count the number of qualifying r’s. Theorems 2.5 and 2.6 state bounds
on this measure of algorithm complexity. I will leave it to the reader to formulate
theorems regarding other measures.

Theorem 2.5. Let d, k,m be positive integers with m ≥ dk + 1. Let f ∈ Q[x] be a

polynomial of degree d with leading coefficient fd > 0. Let g ∈ Q[x] be a polynomial

of degree 1 with leading coefficient g1 > 0. Then there are at most m − 1 values

r ∈ Q such that |r| ≤ 1, gcd{1, f(r)} > m1/2k(2g1)
(m−1)/2k(gd

1/fd)
d(k+1)/2m−1,

and g(r) ∈ Z.

Take, for example, k = 1 and m = 2d: there are at most 2d − 1 values r ∈ Q

such that |r| ≤ 1, gcd{1, f(r)} > (2d)1/2(2g1)
d−1/2(gd

1/fd)
−1/2, and g(r) ∈ Z.

Proof. Apply lattice-basis reduction to Theorem 2.3.
In more detail: Define γ = m1/2k(2g1)

(m−1)/2k(gd
1/fd)

d(k+1)/2m−1, and define L
as above. There is a nonzero vector ϕ ∈ L such that |ϕ| ≤ 2(m−1)/2(detL)1/m. By
Theorem 2.3, each qualifying value r ∈ Q is a root of ϕ. The degree of ϕ is at most
m − 1 by construction of L, so there are at most m − 1 roots of ϕ. �

Theorem 2.6. Let d, k,m be positive integers with m ≥ dk + 1. Let f ∈ Q[x]
be a polynomial of degree d with leading coefficient fd > 0. Let g ∈ Q[x] be

a polynomial of degree 1 with leading coefficient g1 > 0. Assume that g1 <
(gd

1/fd)
2k/(m−1)−dk(k+1)/m(m−1)/2m1/(m−1). Then there are at most m − 1 values

r ∈ Q such that |r| ≤ 1, f(r) ∈ Z, and g(r) ∈ Z.

Take, for example, k = 1 and m = 2d: if 2g1 < (gd
1/2dfd)

1/(2d−1) then there are
at most 2d − 1 values r ∈ Q such that |r| ≤ 1, f(r) ∈ Z, and g(r) ∈ Z.

Proof. Apply lattice-basis reduction to Theorem 2.4. �

3. Parameter choice and other optimizations

This section discusses the choice of k amd m in Section 2, and other ways to
speed up the computation of the desired numbers r.

The history of this subject—see Section 1—shows each application progressing
from simple choices of k and m to near-optimal choices of k and m. It turns out
to be possible to unify all of these application-specific optimizations into a few
straightforward formulas: Theorem 3.2 states near-optimal choices of k and m for
Theorem 2.3, and Theorem 3.4 states near-optimal choices of k and m for Theorem
2.4. Future applications should be able to reuse these unified theorems, rather than
wasting time redoing the same optimizations from scratch.

Parameter choice for Theorem 2.3. Theorem 2.3 assumes that gcd{1, f(r)} >
γ, where γ = m1/2k(2g1)

(m−1)/2k(gd
1/fd)

d(k+1)/2m−1. How small can one make this
lower bound γ by varying m and k?

Assume that g1 and 1/fd exceed 1. Theorem 3.1 then says that γ is smaller

than β = m1/2k(2g1)
αd(1+1/2k)fd/gd

1 , where α =
√

1 + (lg(1/fd))/ lg((2g1)d), if
m is chosen as ⌈αd(k + 1)⌉. This choice of m approximately balances the factors
(2g1)

(m−1)/2k and (gd
1/fd)

d(k+1)/2m in Theorem 2.3. Note that α ≥ 1, so m ≥ dk+d.
Note also that m is not difficult to compute: comparing αd(k + 1) to an integer
boils down to comparing integer powers of fd and 2g1.

REDUCING LATTICE BASES TO FIND SMALL-HEIGHT VALUES OF POLYNOMIALS 7

As k increases (slowing down the computation of ϕ), β converges to (2g1)
αdfd/gd

1 ,
which is very close to a lower bound on γ. The quantity (2g1)

αd is the doubly-
geometric average of (2g1)

d and (2g1)
d/fd. Theorem 3.2 considers the special case

k = ⌈αd ⌈lg 2g1⌉ /2⌉, which balances the desire for a small β against the desire for
small lattice ranks.

For comparison: If k = 1, the optimal choice of m is approximately
√

2αd for

large αd, with γ ≈ (2g1)
√

2αdfd/gd
1 . Allowing larger k thus changes the exponent

of 2g1 by a factor of approximately
√

2.

Theorem 3.1. Let f ∈ Q[x] be a polynomial of positive degree d with leading coef-

ficient fd ∈ (0, 1]. Let g ∈ Q[x] be a polynomial of degree 1 with leading coefficient

g1 ≥ 1. Let k be a positive integer. Define α =
√

1 + (lg(1/fd))/ lg((2g1)d),

m = ⌈αd(k + 1)⌉, β = m1/2k(2g1)
αd(1+1/2k)fd/gd

1 , and L as above. Let ϕ ∈ L
be a nonzero vector such that |ϕ| ≤ 2(m−1)/2(detL)1/m. If r ∈ Q, |r| ≤ 1,
gcd{1, f(r)} ≥ β, and g(r) ∈ Z, then ϕ(r) = 0.

Proof. First m − 1 ≤ αd(k + 1) so (2g1)
(m−1)/2k ≤ (2g1)

αd(k+1)/2k. Second 1/m ≤
1/αd(k + 1) so (gd

1/fd)
d(k+1)/2m ≤ (gd

1/fd)
1/2α < ((2g1)

d/fd)
1/2α = (2g1)

αd/2 by
choice of α. Thus m1/2k(2g1)

(m−1)/2k(gd
1/fd)

d(k+1)/2mfd/gd
1 < β. Apply Theorem

2.3. �

Theorem 3.2. Let f ∈ Q[x] be a polynomial of positive degree d with leading

coefficient fd ∈ (0, 1]. Let g ∈ Q[x] be a polynomial of degree 1 with leading

coefficient g1 ≥ 1. Define α =
√

1 + (lg(1/fd))/ lg((2g1)d), k = ⌈αd ⌈lg 2g1⌉ /2⌉,
m = ⌈αd(k + 1)⌉, and L as above. Let ϕ ∈ L be a nonzero vector such that

|ϕ| ≤ 2(m−1)/2(detL)1/m. If r ∈ Q, |r| ≤ 1, gcd{1, f(r)} ≥ 2m1/2k(2g1)
αdfd/gd

1 ,

and g(r) ∈ Z, then ϕ(r) = 0.

Proof. By construction k ≥ αd(lg 2g1)/2, so 1 ≥ (lg 2g1)αd/2k, so 2 ≥ (2g1)
αd/2k.

Thus gcd{1, f(r)} ≥ β where β = m1/2k(2g1)
αd(1+1/2k)fd/gd

1 . Apply Theorem
3.1. �

Parameter choice for Theorem 2.4. Theorem 2.4 assumes that g1 is smaller
than (gd

1/fd)
2k/(m−1)−dk(k+1)/m(m−1)/2m1/(m−1). How large can one make this

exponent 2k/(m − 1) − dk(k + 1)/m(m − 1) by varying m and k?
Theorem 3.3 chooses m = dk + d, achieving exponent k/(dk + d − 1), which

is reasonably close to optimal. As k increases (slowing down the computation
of ϕ), the exponent converges to 1/d. Theorem 3.4 considers the special case
k =

⌈⌈

lg(gd
1/2dfd)

⌉

/d
⌉

, which balances the desire for a large exponent against the
desire for small lattice ranks.

Theorem 3.3. Let f ∈ Q[x] be a polynomial of positive degree d with leading

coefficient fd > 0. Let g ∈ Q[x] be a polynomial of degree 1 with leading coefficient

g1 > 0. Let k be a positive integer. Define m = dk + d and L = Z + Zg +
· · · + Zgd−1 + Zf + Zgf + · · · + Zgd−1f + · · · + Zfk + Zgfk + · · · + Zgd−1fk.

Let ϕ ∈ L be a nonzero vector such that |ϕ| ≤ 2(m−1)/2(det L)1/m. Assume that

g1 < (gd
1/fd)

k/(m−1)/2m1/(m−1). If r ∈ Q, |r| ≤ 1, f(r) ∈ Z, and g(r) ∈ Z, then

ϕ(r) = 0.

Proof. d(k+1)/m = 1 so 2k/(m−1)−dk(k+1)/m(m−1) = 2k/(m−1)−k/(m−1) =
k/(m − 1). Apply Theorem 2.4. �

8 DANIEL J. BERNSTEIN

Theorem 3.4. Let f ∈ Q[x] be a polynomial of positive degree d with leading

coefficient fd ∈ (0, 1/8d). Let g ∈ Q[x] be a polynomial of degree 1 with leading

coefficient g1 ≥ 1/4. Define k =
⌈⌈

lg(gd
1/2dfd)

⌉

/d
⌉

, m = dk+d, and L = Z+Zg+

· · · + Zgd−1 + Zf + Zgf + · · · + Zgd−1f + · · · + Zfk + Zgfk + · · · + Zgd−1fk. Let

ϕ ∈ L be a nonzero vector such that |ϕ| ≤ 2(m−1)/2(detL)1/m. If r ∈ Q, |r| ≤ 1,
f(r) ∈ Z, and g(r) ∈ Z, then ϕ(r) = 0.

Proof. First gd
1/2dfd > (1/4)d/(2/8)d = 1, so k is a positive integer. Next m =

d(k + 1) ≥ 2, so lg m ≤ m − 1, so 1 ≤ 2/m1/(m−1). Next m − 1 = dk + d − 1 ≥
lg(gd

1/2dfd) + d− 1 ≥ ((d − 1)/d) lg(gd
1/2dfd) + d − 1 = ((m − 1 − dk)/d) lg(gd

1/fd)
so d(m − 1) ≥ (m − 1 − dk) lg(gd

1/fd) so 1 ≥ (1/d − k/(m − 1)) lg(gd
1/fd); i.e.,

(gd
1/fd)

1/d−k/(m−1) ≤ 2. Next g1 = (gd
1/fd)

1/d−k/(m−1)(gd
1/fd)

k/(m−1)f
1/d
d (1) <

(2)(gd
1/fd)

k/(m−1)(1/8)(2/m1/(m−1)) = (gd
1/fd)

k/(m−1)/2m1/(m−1). Finally apply
Theorem 3.3. �

Computation. Theorems 3.1, 3.2, 3.3, and 3.4, like Theorems 2.3 and 2.4, can
easily be converted into algorithms to compute the set of r’s. Theorems 3.5, 3.6,
3.7, and 3.8, like Theorems 2.5 and 2.6, measure the complexity of these algorithms
by stating bounds on the output size.

Theorem 3.5. Let f ∈ Q[x] be a polynomial of positive degree d with leading coef-

ficient fd ∈ (0, 1]. Let g ∈ Q[x] be a polynomial of degree 1 with leading coefficient

g1 ≥ 1. Let k be a positive integer. Define α =
√

1 + (lg(1/fd))/ lg((2g1)d) and

m = ⌈αd(k + 1)⌉. Then there are at most m − 1 values r ∈ Q such that |r| ≤ 1,
gcd{1, f(r)} ≥ m1/2k(2g1)

αd(1+1/2k)fd/gd
1 , and g(r) ∈ Z.

Proof. Apply lattice-basis reduction to Theorem 3.1. �

Theorem 3.6. Let f ∈ Q[x] be a polynomial of positive degree d with leading

coefficient fd ∈ (0, 1]. Let g ∈ Q[x] be a polynomial of degree 1 with leading

coefficient g1 ≥ 1. Define α =
√

1 + (lg(1/fd))/ lg((2g1)d), k = ⌈αd ⌈lg 2g1⌉ /2⌉,
and m = ⌈αd(k + 1)⌉. Then there are at most m−1 values r ∈ Q such that |r| ≤ 1,
gcd{1, f(r)} ≥ 2m1/2k(2g1)

αdfd/gd
1 , and g(r) ∈ Z.

The bound m − 1 is approximately (lg((2g1)
d) + lg(1/fd))d/2. The limit on

gcd{1, f(r)} is approximately fd/gd
1 times the doubly-geometric average of (2g1)

d

and (2g1)
d/fd.

Proof. Apply lattice-basis reduction to Theorem 3.2. �

Theorem 3.7. Let f ∈ Q[x] be a polynomial of positive degree d with leading

coefficient fd > 0. Let g ∈ Q[x] be a polynomial of degree 1 with leading coefficient

g1 > 0. Let k be a positive integer. Define m = dk + d. Assume that g1 <
(gd

1/fd)
k/(m−1)/2m1/(m−1). Then there are at most m − 1 values r ∈ Q such that

|r| ≤ 1, f(r) ∈ Z, and g(r) ∈ Z.

Proof. Apply lattice-basis reduction to Theorem 3.3. �

Theorem 3.8. Let f ∈ Q[x] be a polynomial of positive degree d with leading

coefficient fd ∈ (0, 1/8d). Let g ∈ Q[x] be a polynomial of degree 1 with leading

coefficient g1 ≥ 1/4. Then there are fewer than lg(gd
1/fd)+d− 1 values r ∈ Q such

that |r| ≤ 1, f(r) ∈ Z, and g(r) ∈ Z.

Proof. Apply lattice-basis reduction to Theorem 3.4, using m < lg(gd
1/fd) + d. �

REDUCING LATTICE BASES TO FIND SMALL-HEIGHT VALUES OF POLYNOMIALS 9

Combining Theorem 3.3 with brute force. Theorem 3.3, applied to f and g,
finds all rational numbers r ∈ [−1, 1] with f(r), g(r) ∈ Z. The same theorem,
applied to f(x+2) and g(x+2), finds all rational numbers r ∈ [1, 3] with f(r), g(r) ∈
Z. With c such computations, involving c lattices of rank m = dk + d, one can
cover an r interval of length 2c.

One can view Theorem 3.3 as searching the rationals r with g(r) ∈ Z, to see
which ones also have f(r) ∈ Z. In an interval of length 2c, there are approximately
2cg1 < c(gd

1/fd)
k/(dk+d−1) rationals r with g(r) ∈ Z, so the number of r’s searched

per unit time is approximately (gd
1/fd)

k/(dk+d−1) divided by the time to handle a
lattice of rank dk+d. Given f and g, one can choose k to (approximately) maximize
this ratio. This idea appears in [8].

Smaller improvements. Another way to expand the number of r’s searched is to
perform several rational-root calculations per lattice, searching for roots of shifts of
ϕ. For example, the roots of ϕ− 2, ϕ− 1, ϕ, ϕ+1, ϕ+2 include all r ∈ Q such that
|r| ≤ 1, f(r) ∈ Z, and g(r) ∈ Z, provided that g1 < 3(gd

1/fd)
k/(m−1)/2m1/(m−1);

note the 3 here. I learned this idea from Lenstra.
The choice of m in Theorem 3.1 is not exactly optimal. It is better to have the

computer run through all pairs (k,m), in increasing order of the r computation
time, until finding a pair (k,m) where the bound in Theorem 2.3 is satisfactory.
Similar comments apply to Theorem 3.3.

I quoted lattice-basis reduction in Section 2 as producing nonzero vectors ϕ ∈ L
such that |ϕ| is at most 2(m−1)/2(detL)1/m. Slower reduction algorithms can shrink
the factor 2(m−1)/2; even without this extra work, lattice-basis reduction often
produces a vector ϕ with |ϕ| < (detL)1/m. Bounds that depend on ϕ, as in
Theorem 2.1, are slightly better than bounds that depend solely on detL.

In Theorems 2.3, 2.4, 3.1, and 3.3, the lattice L can be replaced by a slightly
smaller lattice, namely Z+Zg+Zg(g−1)/2+Zg(g−1)(g−2)/6+ · · · . The point is
that g(r)(g(r)− 1)/2 etc. are integers if g(r) is an integer. This idea was published
in [11], with credit to Howgrave-Graham and Lenstra independently.

A few years earlier, Howgrave-Graham in [20, Section 4.5.2] had made the similar
observation that f could often be replaced by f/d!, after suitable tweaking of the
coefficients of f .

Another slight improvement is to change the metric used to define the lattice,
replacing 1, x, x2, . . . , xm−1 with Chebyshev polynomials. This idea was published
by Coppersmith in [11, page 24], with partial credit (of unclear scope) to Boneh.

4. Example: roots mod n given their high bits

This section explains how to search an interval [−H,H] for integer roots of an
integer polynomial p modulo n, if H is not too large. For example, this section
explains how to search the interval [t − H, t + H] for cube roots of s modulo n, if
H is not too large; here p = (x + t)3 − s.

As in previous sections, the search method is parametrized by an exponent k.
Theorem 4.2 uses a particular k that works well for most applications; Theorem
4.1 is more general and allows k to be tuned for the reader’s application. The
subsequent theorems in this section measure the cost of the resulting computations.

The choice of k in Theorem 4.2 allows H up to about n1/d. For example, one can
find cube roots of s modulo n in any interval of length about n1/3. This generalizes
the obvious fact that one can quickly compute r from r3 mod n if 0 ≤ r < n1/3.

10 DANIEL J. BERNSTEIN

For comparison, the simpler choice k = 1 allows H up to only about n2/d(d+1); for
example, about n1/6 for d = 3.

Theorem 4.1. Let n be a positive integer. Let p ∈ Z[x] be a monic polynomial

of positive degree d. Let k be a positive integer. Define m = dk + d. Let H be a

positive integer smaller than nk/(m−1)/2m1/(m−1). Define f = p(Hx)/n ∈ Q[x],
g = Hx ∈ Q[x], and L = Z + Zg + · · · + Zgd−1 + Zf + Zgf + · · · + Zgd−1f +
· · · + Zfk + Zgfk + · · · + Zgd−1fk. Let ϕ ∈ L be a nonzero vector such that

|ϕ| ≤ 2(m−1)/2(detL)1/m. If s ∈ Z, p(s) ∈ nZ, and |s| ≤ H, then ϕ(s/H) = 0.

Proof. Define r = s/H. By hypothesis r ∈ Q, |r| ≤ 1, f(r) = p(s)/n ∈ Z,
g(r) = s ∈ Z, and g1 = H < nk/(m−1)/2m1/(m−1) = (gd

1/fd)
k/(m−1)/2m1/(m−1).

Apply Theorem 3.3. �

Theorem 4.2. Let n be a positive integer. Let p ∈ Z[x] be a monic polynomial

of positive degree d. Let H be a positive integer smaller than n1/d/8. Define k =
⌈(lg n)/d⌉ − 1 and m = dk + d. Define f = p(Hx)/n ∈ Q[x], g = Hx ∈ Q[x], and

L = Z+Zg+· · ·+Zgd−1+Zf+Zgf+· · ·+Zgd−1f+· · ·+Zfk+Zgfk+· · ·+Zgd−1fk.

Let ϕ ∈ L be a nonzero vector such that |ϕ| ≤ 2(m−1)/2(detL)1/m. If s ∈ Z,

p(s) ∈ nZ, and |s| ≤ H, then ϕ(s/H) = 0.

Proof. The leading coefficient fd of f is Hd/n ∈ (0, 1/8d). The leading coefficient
g1 of g is H > 1/4. The quotient gd

1/2dfd is Hd/2d(Hd/n) = n/2d. Consequently
k = ⌈(lg n − d)/d⌉ = ⌈⌈lg n − d⌉ /d⌉ =

⌈⌈

lg(gd
1/2dfd)

⌉

/d
⌉

.
Define r = s/H. By hypothesis r ∈ Q, |r| ≤ 1, f(r) = p(s)/n ∈ Z, and

g(r) = s ∈ Z. Apply Theorem 3.4. �

Theorem 4.3. Let n be a positive integer. Let p ∈ Z[x] be a monic polynomial

of positive degree d. Let k be a positive integer. Define m = dk + d. Let H be a

positive integer smaller than nk/(m−1)/2m1/(m−1). Then there are at most m − 1
integers s ∈ {−H,−H + 1, . . . ,−1, 0, 1, . . . ,H − 1,H} such that p(s) ∈ nZ.

Proof. Apply lattice-basis reduction to Theorem 4.1. �

Theorem 4.4. Let n be a positive integer. Let p ∈ Z[x] be a monic polynomial of

positive degree d. Let H be a positive integer smaller than n1/d/8. Then there are

fewer than lg n + d− 1 integers s ∈ {−H,−H + 1, . . . ,−1, 0, 1, . . . ,H − 1,H} such

that p(s) ∈ nZ.

Proof. Apply lattice-basis reduction to Theorem 4.2, using m < lg n + d. �

History. As indicated in Section 1, the n2/d(d+1) result was first published by
H̊astad, and the n1/d result was first published by Coppersmith. Both authors
used their results to break various naive forms of the RSA cryptosystem.

The results also have a positive application to cryptography: viz., compressing
RSA (or Rabin) signatures. Instead of transmitting a cube root (or square root)
of s modulo n, one can transmit the top 2/3 (or 1/2) of the bits of the root.
However, this application is now obsolete, because Bleichenbacher in [4] proposed
a different compression mechanism allowing substantially faster decompression and
verification: compress the cube root to an integer v such that the remainder v3s mod
n is a cube in Z.

REDUCING LATTICE BASES TO FIND SMALL-HEIGHT VALUES OF POLYNOMIALS 11

A numerical example. Define n = 2844847044114666594769924451263. How
do we find, near the integer 1249180057712313741000000000000, a square root
of 1982518464324230691670577165029 modulo n? In other words: Define p =
(x + 1249180057712313741000000000000)2 − 1982518464324230691670577165029.
How do we find a small root of p modulo n?

Choose k = 2 and H = 1012/2. Define d = deg p = 2 and m = dk + d = 6. Then
m(2H)m−1 = 6 · 1060 < n2 so H < nk/(m−1)/2m1/(m−1). Define f = p(Hx)/n,
g = Hx, and L = Z + Zg + Zf + Zgf + Zf2 + Zgf2.

Reduce the basis 1, g, f, gf, f2, gf2 to find a nonzero vector in L of length at most
2(m−1)/2(detL)1/m = 25/2H5/2/n ≈ 0.352: for example, the vector ϕ = 3gf2 −
14990160692547764892644746695414f2+16455550604884219114654409906953gf−
707310791602022640421396682594225363949260f + (· · ·)g + (· · ·)1 =

(9375000/n2)x5

− (40296668463375000/n2)x4

− (8521407708770506207316875000000000000000000000000000000000/n2)x3

+ (7549559148957274134432151119009658000000000000000000000000/n2)x2

+ (85256085569824577108175046901012420957509825119500000000000/n2)x

− (73391645786690147620682490399407175727933183364776412308271/n2)1,

of length approximately 0.019.
The only rational root of ϕ is 372834385559/H. Check that p(372834385559)

is a multiple of n, i.e., that 1249180057712313741372834385559 is a square root of
1982518464324230691670577165029 modulo n.

Theorem 4.1 guaranteed that this procedure would find every integer root of p
modulo n in the interval [−H,H]. (Theorem 2.1 guaranteed an even wider interval
after |ϕ| turned out to be noticeably smaller than 2(m−1)/2(det L)1/m.) This is
much faster than separately checking each of the 1012 + 1 integers in this interval.

5. Example: constrained divisors of n

This section explains how to search for small integers s such that

• u + s divides n; or, more generally,
• u + vs divides n, where v is coprime to n; or, more generally,
• (u + vs)d divides n, where v is coprime to n.

For example, by choosing d = 1 and choosing v as a large power of 2, one can search
for divisors of n having specified low bits.

As in previous sections, the search method is parametrized by an exponent k.
Theorem 5.2 uses a particular k that works well for most applications; Theorem
5.1 is more general and allows k to be tuned for the reader’s application. The
remaining theorems in this section measure the cost of the resulting computations.

Section 6 combines this search method with brute force to search a somewhat
wider range of s. Conclusion in a nutshell: if v ≥ n1/4, and v is coprime to n, then
one can quickly find all divisors of n in (u + vZ) ∩ [1, n1/2].

Theorem 5.1. Let d, n, u, v, w,H be positive integers such that vw − 1 ∈ nZ

and n ≥ Hd. Let k be a positive integer. Define α =
√

(lg 2dn)/ lg 2dHd, m =

⌈αd(k + 1)⌉, f = (uw+Hx)d/n ∈ Q[x], g = Hx ∈ Q[x], λ = m1/2kd(2H)α(1+1/2k),

and L as above. Let ϕ ∈ L be a nonzero vector such that |ϕ| ≤ 2(m−1)/2(detL)1/m.

If s ∈ Z, |s| ≤ H, u + vs ≥ λ, and n ∈ (u + vs)dZ, then ϕ(s/H) = 0.

12 DANIEL J. BERNSTEIN

The polynomial (uw + Hx)d/n used here is better than (u + vHx)d/n when
v > 1: it has a smaller leading coefficient, so it produces a smaller lattice L.

Proof. By hypothesis u + vs ≥ λ > 0. Note that u + vs divides uw + s. Indeed,
u + vs divides (u + vs)w = uw + s + (vw − 1)s; but u + vs also divides (u + vs)d,
hence n, hence vw − 1.

Define r = s/H. Then f(r) = (uw + s)d/n. The numerator (uw + s)d and the
denominator n are both divisible by (u + vs)d, so gcd{1, f(r)} ≥ (u + vs)d/n ≥
λd/n = m1/2k(2H)αd(1+1/2k)/n.

By hypothesis g1 = H ≥ 1; 1/fd = n/Hd ≥ 1; α =
√

1 + lg(1/fd)/ lg((2g1)d);

r ∈ Q; |r| = |s| /H ≤ 1; gcd{1, f(r)} ≥ m1/2k(2g1)
αd(1+1/2k)fd/gd

1 ; and g(r) = s ∈
Z. Apply Theorem 3.1. �

Theorem 5.2. Let d, n, u, v, w,H be positive integers such that vw − 1 ∈ nZ and

n ≥ Hd. Define α =
√

(lg 2dn)/ lg 2dHd, k = ⌈αd ⌈lg 2H⌉ /2⌉, m = ⌈αd(k + 1)⌉,
f = (uw + Hx)d/n ∈ Q[x], g = Hx ∈ Q[x], and L as above. Let ϕ ∈ L be a

nonzero vector such that |ϕ| ≤ 2(m−1)/2(detL)1/m. If s ∈ Z, |s| ≤ H, u + vs ≥
21/dm1/2kd(2H)α, and n ∈ (u + vs)dZ, then ϕ(s/H) = 0.

The lattice rank m here is larger than (d/2) lg 2dn. It is only slightly larger for
typical values of d, n,H.

Proof. By hypothesis 2H ≥ 2 so lg 2H ≥ 1; hence k is a positive integer. Also
2k ≥ αd lg 2H so 21/d ≥ (2H)α/2k so u + vs ≥ λ where λ = m1/2kd(2H)α(1+1/2k).
Apply Theorem 5.1. �

Theorem 5.3. Let d, n, u, v,H be positive integers such that gcd{v, n} = 1 and

n ≥ Hd. Let k be a positive integer. Define α =
√

(lg 2dn)/ lg 2dHd and m =
⌈αd(k + 1)⌉. Then there are at most m − 1 integers s ∈ {−H, . . . ,−1, 0, 1, . . . ,H}
such that u + vs ≥ m1/2kd(2H)α(1+1/2k) and n ∈ (u + vs)dZ.

Proof. Find a positive integer w with vw − 1 ∈ nZ. Apply lattice-basis reduction
to Theorem 5.1. �

Theorem 5.4. Let d, n, u, v,H be positive integers such that gcd{v, n} = 1 and n ≥
Hd. Define α =

√

(lg 2dn)/ lg 2dHd, k = ⌈αd ⌈lg 2H⌉ /2⌉, and m = ⌈αd(k + 1)⌉.
Then there are at most m − 1 integers s ∈ {−H, . . . ,−1, 0, 1, . . . ,H} such that

u + vs ≥ 21/dm1/2kd(2H)α and n ∈ (u + vs)dZ.

Proof. Find a positive integer w with vw − 1 ∈ nZ. Apply lattice-basis reduction
to Theorem 5.2. �

History. As indicated in Section 1, results of this type were developed in two
contexts independently. The first context is proving primality of n: the Adleman-
Pomerance-Rumely method in [3] exhibits some arithmetic progressions and proves,
using factors of unit groups of extensions of Z/n, that every divisor of n is in one
of those progressions. The second context is factoring an RSA public key n given
part of the secret key: for example, finding a divisor of n given the low bits of the
divisor.

In the first context, Lenstra in [24] showed how to find all divisors of n in an
arithmetic progression u + vZ with lg v > (1/3) lg n. Konyagin and Pomerance in
[22, Algorithm 3.2] improved (1/3) lg n to 0.3 lg n, in the special case u = 1. This

REDUCING LATTICE BASES TO FIND SMALL-HEIGHT VALUES OF POLYNOMIALS 13

0.3 lg n result, for any u, follows from Theorem 2.3 with m = 5 and k = 2; I have not
checked whether the resulting algorithm is equivalent to the Konyagin-Pomerance
algorithm.

In the second context, Rivest and Shamir in [31] gave a heuristic outline of
a method to find a divisor of n given about (1/3) lg n high bits of the divisor.
Coppersmith in [9] proved that a much more complicated bivariate algorithm would
find a divisor of n given (0.25 + ǫ) lg n high bits of the divisor. Howgrave-Graham
in [19] achieved (0.25+ǫ) lg n with the simpler algorithm shown here. Each of these
authors commented that the method also applied to low bits, but they did not
generalize to other arithmetic progressions.

These two threads in the literature were finally combined in [20, Section 5.5]
and [12]: Coppersmith, Howgrave-Graham, and Nagaraj improved the Konyagin-
Pomerance 0.3 lg n to (0.25 + ǫ) lg n. Lenstra subsequently pointed out that the ǫ
could be eliminated; see Section 6 for further discussion.

Boneh, Durfee, and Howgrave-Graham in [7] pointed out, at least for v = 1, the
further generalization from divisors u + vs to divisors (u + vs)d. As d increases,
the allowable range of H shrinks, but the range of interesting divisors shrinks more
quickly. At an extreme, for d larger than about

√
lg n, this method finds d-power

divisors of n more quickly than the elliptic-curve method.

A numerical example. Consider the problem of finding p ≈ 1814430925000000
such that p2 divides n = 3767375198243112483228974667456105955144630367.

Define d = 2, u = 1814430925000000, v = 1, w = 1, k = 2, and H = 106. Define
α =

√

(lg 4n)/ lg 4H2 ≈ 1.91424 and m = ⌈αd(k + 1)⌉ = 12. Then u−H ≥ λ where

λ = m1/2kd(2H)α(1+1/2k). Define f = (uw + Hx)d/n = (u + Hx)2/n, g = Hx, and
L = Z+Zg +Zf +Zgf +Zf2 +Zgf2 +Zg2f2 +Zg3f2 +Zg4f2 +Zg5f2 +Zg6f2 +
Zg7f2.

Reduce the basis 1, g, f, gf, f2, gf2, g2f2, g3f2, g4f2, g5f2, g6f2, g7f2 to find a
nonzero vector in L of length at most 2(m−1)/2(det L)1/m: for example, the vector

8654285929051698536731156579739732909254403370124466963870118306516f2

− 6050109444904732893967670609502978242326457349320354f

− 2725541201878729584772216355507217441762891101136805gf2

− 1321737599339233171981104958040247284

− 6668878229472208312826600694772455332gf

+ 751073287899629272340418092672916546g2f2

− 832523980748052892274g

− 165577708623278785839g3f2

+ 22814g4f2,

of length approximately 2.3 · 10−38. The only rational root of this polynomial is
339897/H. Check that 18144309253398972 is a divisor of n.

Theorem 5.1 guaranteed that this procedure would find all divisors (u+ s)2 of n
with −H ≤ s ≤ H. In fact, Theorem 2.3 guaranteed that k = 2 and m = 7 would
have done the same job, and that k = 1 and m = 5 would have worked for the
smaller interval −450000 ≤ s ≤ 450000.

14 DANIEL J. BERNSTEIN

6. Partitioning an arithmetic progression

Consider the problem of finding all divisors of n in (u + vZ) ∩ [1, n1/2]. Here
u, v, n are positive integers with v ≥ n1/4 and gcd{v, n} = 1.

One can use Theorem 5.2 to find all divisors of n in the arithmetic progression
u − vH, u − v(H − 1), . . . , u + v(H − 1), u + vH. But there is a limitation here:
the smallest entry u − vH must exceed 2m1/2k(2H)α, approximately the doubly-
geometric average of n and Hd. Another way to view the lower bound on u−vH is
as follows: if the smallest entry u − vH is approximately n1/α then the number of

entries is limited to approximately n1/α2

. In particular, if this method is searching
for divisors around n1/2, then it will search at most about n1/4 entries in a specified
arithmetic progression.

This might not sound like a serious limitation: by hypothesis v ≥ n1/4, so there
are at most n1/4 elements of (u+vZ)∩[1, n1/2]. But one cannot search n1/4 elements
unless the smallest element searched is close to n1/2.

The point of this section is that one can cover (u+vZ)∩[1, n1/2] with O((lg n)1/2)
arithmetic progressions and O((lg n)1/2) extra integers, where each progression
meets the conditions of Theorem 5.2. Consequently, one can quickly find all the
divisors of n in (u+vZ)∩ [1, n1/2]. See Theorem 6.4 for a bound on the cost of this
computation.

My bounds here are completely explicit. Various constants can be improved; my
goal in selecting constants was not to obtain optimal cost bounds, but to simplify
the statements and the proofs as far as possible while still achieving O((lg n)1/2).

Theorem 6.1. Let n be an integer with n ≥ 224. Let v be a positive integer with

gcd{v, n} = 1. Let H be an integer with 2 ≤ H ≤ n. Define α =
√

(lg 2n)/ lg 2H.

Let z be an integer with z ≥ 4(2H)α. Then there are at most 2 lg 2n +
√

lg 2n
divisors of n in {z, z + v, z + 2v, . . . , z + 2vH}.

Proof. The difference 2r
√

2 − 4r2 − 2r is positive for all real numbers r ≥ 5: its

value at r = 5 is 25
√

2 − 100 − 10 > 27 − 110 > 0; its derivative at r = 5 is

25
√

2
√

2 log 2 − 40 − 2 > 0; and its second derivative is 2r
√

2(
√

2 log 2)2 − 8 > 0 for

r ≥ 5. In particular,
√

lg 2n ≥
√

25 = 5, so 2
√

2 lg 2n ≥ 4 lg 2n + 2
√

lg 2n.
Define k = ⌈α ⌈lg 2H⌉ /2⌉. By hypothesis H ≥ 2 so lg 2H ≥ lg 4 = 2 so

2k ≥ α lg 2H =
√

(lg 2n) lg 2H ≥
√

2 lg 2n. Furthermore H ≤ n so α ≥ 1 so
α ⌈lg 2H⌉ /2 ≥ 1 so k ≤ 2α ⌈lg 2H⌉ /2 = α ⌈lg 2H⌉ ≤ 2α lg 2H so α(k + 1) ≤
2α2 lg 2H + α = 2 lg 2n + α ≤ 2 lg 2n +

√
lg 2n.

Define m = ⌈α(k + 1)⌉. Again α ≥ 1 so α(k + 1) ≥ 1; thus m ≤ 2α(k + 1) ≤
4 lg 2n + 2

√
lg 2n ≤ 2

√
2 lg 2n ≤ 22k. Consequently z ≥ 2m1/2k(2H)α.

Define d = 1 and u = z + vH. By Theorem 5.4, there are at most m − 1
divisors of n in {u − vH, . . . , u − v, u, u + v, . . . , u + vH} ∩ [2m1/2k(2H)α,∞) =
{z, z + v, z + 2v, . . . , z + 2vH}. Finally m − 1 ≤ α(k + 1) ≤ 2 lg 2n +

√
lg 2n. �

Theorem 6.2. Let n, u, v be integers with v ≥ n1/4 ≥ 264 and gcd{v, n} = 1. Let i
be an integer with 8 ≤ i ≤

√
lg n/2. Then there are at most 2 lg 2n+

√
lg 2n divisors

of n in (u + vZ) ∩ [n1/2−2/i, n1/2−2/(i+1)].

Proof. Define H =
⌊

n1/4−2/(i+1)/2
⌋

. Note that n1/4−2/(i+1) ≥ n1/4−2/9 = n1/36 ≥
4, so H ≥ 2; and H ≤ n1/4−2/(i+1) ≤ n. Define α =

√

(lg 2n)/ lg 2H. Define

REDUCING LATTICE BASES TO FIND SMALL-HEIGHT VALUES OF POLYNOMIALS 15

z as the smallest element of (u + vZ) ∩ [n1/2−2/i,∞). Note that z ≥ n1/2−2/i ≥
n1/2−2/8 = n1/4 ≥ 264.

I claim that z + 2Hv + v > n1/2−2/(i+1). Proof: H + 1 > n1/4−2/(i+1)/2, so
z + 2Hv + v ≥ (1 + 2H + 1)n1/4 > n1/4−2/(i+1)n1/4 = n1/2−2/(i+1).

I also claim that z ≥ 4(2H)α. Proof: i2 ≥ (i+1)(i−1); so 2/(i+1) ≥ 2(i−1)/i2;
so 2/(i + 1) − 2(i − 2)/i2 ≥ 2/i2 ≥ 2/(

√
lg n/2)2 = 8/ lg n; so

((

1

2
− 2

i

)

lg n − 2

)2

−
(

1

4
− 2

i + 1

)

(lg 2n) lg n

=

(

2

i + 1
− 2(i − 2)

i2

)

(lg n)2 −
(

4

(

1

2
− 2

i

)

+

(

1

4
− 2

i + 1

))

lg n + 4

≥ 8

lg n
(lg n)2 −

(

4

(

1

2

)

+

(

1

4

))

lg n + 4 =
23

4
lg n + 4 ≥ 0;

so α2(lg 2H)2 = lg 2n lg 2H ≤ (lg 2n)(1/4− 2/(i + 1)) lg n ≤ ((1/2− 2/i) lg n− 2)2;
so α lg 2H ≤ |(1/2 − 2/i) lg n − 2| = (1/2 − 2/i) lg n − 2 ≤ lg z − 2.

By Theorem 6.1, {z, z + v, . . . , z + 2vH} has at most 2 lg 2n+
√

lg 2n divisors of
n. Finally (u + vZ) ∩ [n1/2−2/i, n1/2−2/(i+1)] ⊆ {z, z + v, . . . , z + 2vH}. �

Theorem 6.3. Let n, u, v be integers with v ≥ n1/4 ≥ 275 and gcd{v, n} = 1. Let

i be an integer with 1 ≤ i ≤
⌈

16
√

lg n
⌉

. Then there are at most 2 lg 2n +
√

lg 2n + 1

divisors of n in (u + vZ) ∩ [n1/2/2i/4, n1/2/2(i−1)/4].

Proof. Define H =
⌊

n1/4/2(i+13)/4
⌋

. Note that (
√

lg n − 8)2 ≥ (
√

4 · 75− 8)2 ≥ 82,

so lg n−16
√

lg n ≥ 82−82 = 18, so lg n−i ≥ 17, so n1/4/2(i+13)/4 = 2(lg n−i−13)/4 ≥
24/4 = 2, so H ≥ 2; and H ≤ n1/4 ≤ n. Define α =

√

(lg 2n)/ lg 2H. Define z as

the smallest element of (u + vZ) ∩ [n1/2/2i/4,∞).
I claim that z + 2Hv + 2v > n1/2/2(i−1)/4. Proof: H + 1 > n1/4/2(i+13)/4, and

1 + 2−9/4 ≥ 21/4, so z + 2(H + 1)v > n1/2/2i/4 + 2−9/4n1/2/2i/4 ≥ n1/2/2(i−1)/4.
I claim that z ≥ 4(2H)α. Proof: ((1/2) lg n− i/4−2)2− (lg 2n)(lg n− i−9)/4 =

(i/4 + 2)2 + (i + 9)/4 ≥ 0; so α2(lg 2H)2 = (lg 2n) lg 2H ≤ (lg 2n)(lg n− i− 9)/4 ≤
((1/2) lg n − i/4 − 2)2; and (1/2) lg n − i/4 − 2 ≥ (lg n − i)/4 − 2 ≥ 17/4 − 2 ≥ 0,
so α lg 2H ≤ |(1/2) lg n − i/4 − 2| = (1/2) lg n − i/4 − 2 ≤ lg z − 2.

By Theorem 6.1, {z, z + v, . . . , z + 2vH} has at most 2 lg 2n +
√

lg 2n divisors
of n, so {z, z + v, . . . , z + 2vH + v} has at most 2 lg 2n +

√
lg 2n + 1 divisors of n.

Finally (u + vZ) ∩ [n1/2/2i/4, n1/2/2(i−1)/4] ⊆ {z, z + v, . . . , z + 2Hv + v}. �

Theorem 6.4. Let n, u, v be integers with v ≥ n1/4 ≥ 275 and gcd{v, n} = 1.
Define ℓ = lg 2n. Then there are at most 33ℓ1.5 + 4.5ℓ + 10ℓ0.5 + 2 divisors of n in

(u + vZ) ∩ [1, n1/2].

Proof. There is at most one divisor of n in (u + vZ) ∩ [1, n1/4], since v ≥ n1/4.
Write s =

⌊√
lg n/2

⌋

. Then s ≥ 8. Also s + 1 >
√

lg n/2, so n1/2−2/(s+1) >

n1/2−4/
√

lg n. Apply Theorem 6.2 for each i ∈ {8, 9, . . . , s} to cover the intervals
[n1/2−2/8, n1/2−2/9], [n1/2−2/9, n1/2−2/10], . . . , [n1/2−2/s, n1/2−2/(s+1)]: there are
at most (s − 7)(2ℓ + ℓ0.5) divisors of n in (u + vZ) ∩ [n1/2−2/8, n1/2−2/(s+1)] ⊇
(u + vZ) ∩ [n1/4, n1/2−4/

√
lg n].

Write t =
⌈

16
√

lg n
⌉

. Then t/4 ≥ 4
√

lg n = (4/
√

lg n) lg n, so n1/2/2t/4 ≤
n1/2−4/

√
lg n. Apply Theorem 6.3 for each i ∈ {1, 2, . . . , t} to cover the intervals

[n1/2/21/4, n1/2/20/4], [n1/2/22/4, n1/2/21/4], . . . , [n1/2/2t/4, n1/2/2(t−1)/4]: there

16 DANIEL J. BERNSTEIN

are at most t(2ℓ + ℓ0.5 + 1) divisors of n in (u + vZ) ∩ [n1/2/2t/4, n1/2/20/4] ⊇
(u + vZ) ∩ [n1/2−4/

√
lg n, n1/2].

Add all of these bounds: there are at most 1+(s−7)(2ℓ+ℓ0.5)+t(2ℓ+ℓ0.5+1) ≤
1 + (ℓ0.5/2 − 7)(2ℓ + ℓ0.5) + (1 + 16ℓ0.5)(2ℓ + ℓ0.5 + 1) = 33ℓ1.5 + 4.5ℓ + 10ℓ0.5 + 2
divisors of n in (u + vZ) ∩ [1, n1/2]. �

History. Coppersmith, Howgrave-Graham, and Nagaraj in [20, Section 5.5] and
[12] explained how to construct lattices of total rank O(ǫ−3/2) that would handle all
v ≥ n1/4+ǫ for all sufficiently large n. It is not clear whether one can take ǫ ≈ 1/ lg n
here: Coppersmith, Howgrave-Graham, and Nagaraj did not give simple formulas
for their partition of [1/4, 1/2] as a function of ǫ, and did not quantify “sufficiently
large” as a function of ǫ.

Lenstra constructed lattices of total rank O((lg n)2) handling all v ≥ n1/4, and
asked whether one could achieve O((lg n)3/2). I constructed O((lg n)1/2) lattices of
total rank O((lg n)3/2) handling all v ≥ n1/4; see Theorem 6.4.

The essential difference between the Coppersmith-Howgrave-Graham-Nagaraj
proof and Lenstra’s proof is in the analysis of how much progress is made by a
(2H + 1)-entry arithmetic progression starting at z. The Coppersmith-Howgrave-
Graham-Nagaraj proof has an advantage in handling small divisors: it chooses
H much larger than z/v, producing a large lower bound on lg 2Hv and thus on
lg(z + 2Hv), as in Theorem 6.2 here. Lenstra’s proof has an advantage in handling
large divisors: it allows H to be as small as, e.g., 0.1z/v, and then observes that
lg(z + 2Hv) ≥ lg 1.2z > lg z + 0.25, as in Theorem 6.3 here. My proof combines
these advantages, and does some extra work to make all the bounds explicit.

Coppersmith, Howgrave-Graham, and Nagaraj tuned their choices of (k,m) more
tightly than I have done, and they computed particularly good partitions (at least
for the number-of-outputs cost measure) for several specific values of ǫ. As usual,
I am leaving this level of optimization to the reader.

7. Example: codeword errors past half the minimum distance

Fix a positive integer H. Fix finitely many distinct primes p1, p2, Assume
that the product n = p1p2 · · · is much larger than H. The residue representation

of an integer s ∈ [−H,H] is, by definition, the vector (s mod p1, s mod p2, . . .).
If s′ 6= s then there must be many differences between the residue representations

of s and s′. Define the distance between s and s′ as the sum of lg pi for all i
such that s mod pi 6= s′ mod pi. Then the distance between s and s′ is exactly
lg n − lg gcd{s′ − s, n}, which is at least lg n − lg 2H since gcd{s′ − s, n} ≤ 2H.

Thus the residue representation can tolerate some errors. For any vector v, there
is at most one s whose representation has distance < (lg n − lg 2H)/2 from v.

This section explains how to efficiently recover s from a vector at any distance
up to about lg n−

√

(lg 2n) lg 2H. One first interpolates the vector into an integer
u ∈ {0, 1, . . . , n − 1}, and then finds s such that gcd{u − s, n} is large. For distances
above (lg n−lg 2H)/2, there might be several possibilities for s; this section explains
how to find them all.

Theorem 7.2 uses a particular parameter k that works well for most applications;
Theorem 7.4 measures the cost of the resulting computation. Theorem 7.1 is more
general and allows k to be tuned for the reader’s application; Theorem 7.3 measures
the cost of the resulting computation. The simplest case k = 1, m = 2 of Theorem

REDUCING LATTICE BASES TO FIND SMALL-HEIGHT VALUES OF POLYNOMIALS 17

7.1 finds all s with gcd{u − s, n} > (4Hn)1/2, i.e., with distance smaller than
(lg n − lg 4H)/2; there is at most one such s.

Theorem 7.1. Let n, u,H be positive integers such that n ≥ H. Let k be a positive

integer. Define α =
√

(lg 2n)/ lg 2H, m = ⌈α(k + 1)⌉, λ = m1/2k(2H)α(1+1/2k),

f = (Hx − u)/n ∈ Q[x], g = Hx ∈ Q[x], d = 1, and L as above. Let ϕ ∈ L
be a nonzero vector such that |ϕ| ≤ 2(m−1)/2(detL)1/m. If s ∈ Z, |s| ≤ H, and

gcd{u − s, n} ≥ λ, then ϕ(s/H) = 0.

Compare to the case v = 1, w = 1, d = 1 of Theorem 5.1.

Proof. Define r = s/H. By hypothesis g1 = H ≥ 1; 1/fd = n/H ≥ 1; α =
√

1 + lg(1/fd)/ lg(2g1); r ∈ Q; |r| = |s| /H ≤ 1; g(r) = s ∈ Z; and f(r) = (s−u)/n,

so gcd{1, f(r)} ≥ λ/n = m1/2k(2g1)
α(1+1/2k)fd/g1. Apply Theorem 3.1. �

Theorem 7.2. Let n, u,H be positive integers such that n ≥ H. Define α =
√

(lg 2n)/ lg 2H, k = ⌈α ⌈lg 2H⌉ /2⌉, m = ⌈α(k + 1)⌉, f = (Hx − u)/n ∈ Q[x],
g = Hx ∈ Q[x], d = 1, and L as above. Let ϕ ∈ L be a nonzero vector such that

|ϕ| ≤ 2(m−1)/2(detL)1/m. If s ∈ Z, |s| ≤ H, and gcd{u − s, n} ≥ 2m1/2k(2H)α,

then ϕ(s/H) = 0.

Proof. By hypothesis 2H ≥ 2 so lg 2H ≥ 1; hence k is a positive integer. Also
2k ≥ α lg 2H so 2 ≥ (2H)α/2k so gcd{u − s, n} ≥ λ where λ = m1/2k(2H)α(1+1/2k).
Apply Theorem 7.1. �

Theorem 7.3. Let n, u,H be positive integers such that n ≥ H. Let k be a

positive integer. Define α =
√

(lg 2n)/ lg 2H and m = ⌈α(k + 1)⌉. Then there

are at most m − 1 integers s ∈ {−H, . . . , 0, 1, . . . ,H} such that gcd{u − s, n} ≥
m1/2k(2H)α(1+1/2k).

Proof. Apply lattice-basis reduction to Theorem 7.1. �

Theorem 7.4. Let n, u,H be positive integers such that n ≥ H. Define α =
√

(lg 2n)/ lg 2H, k = ⌈α ⌈lg 2H⌉ /2⌉, and m = ⌈α(k + 1)⌉. Then there are at most

m − 1 integers s ∈ {−H, . . . , 0, 1, . . . ,H} with gcd{u − s, n} ≥ 2m1/2k(2H)α.

Proof. Apply lattice-basis reduction to Theorem 7.2. �

History. The rational-function-field version of the simple case k = 1, m = 2 is the
“Berlekamp-Massey algorithm” for decoding “Reed-Solomon codes.”

The fact that one can efficiently correct larger errors was pointed out in the
function-field case by Sudan in [33], and in the number-field case by Goldreich,
Ron, and Sudan in [14]. These results are tantamount to optimizing m in Theorem

2.3 with k = 1. Increasing k produces an asymptotic
√

2 exponent improvement, as
discussed in Section 3; this

√
2 improvement was pointed out in the function-field

case by Guruswami and Sudan in [17], and in the number-field case by Boneh in
[5].

Algorithms that may produce several values of s are often called “list decoding”
algorithms. Of course, the resulting list is most useful when it has just one value
of s.

18 DANIEL J. BERNSTEIN

A numerical example. Define H = 1000000, n = 101 · 103 · 107 · 109 · 113 · 127 ·
131 · 137 · 139 · 149 · 151 · 157 · 163 · 167 · 173 · 179 · 181 · 191 · 193 · 197 · 199, and u =
476534584519360044215357448296811494656848207. The goal here is to find every
s ∈ [−H,H] with residue representation close to (u mod 101, . . . , u mod 199) =
(94, 43, 17, 71, 103, 77, 64, 25, 114, 9, 106, 16, 62, 134, 75, 13, 155, 26, 138, 21, 105).

Choose k = 3. Define α =
√

(lg 2n)/ lg 2H ≈ 2.697 and m = ⌈α(k + 1)⌉ = 11.
Define f = (Hx− u)/n, g = Hx, and L = Z + Zf + Zf2 + Zf3 + Zgf3 + Zg2f3 +
Zg3f3 + Zg4f3 + Zg5f3 + Zg6f3 + Zg7f3.

Reduce the lattice basis 1, f, f2, f3, gf3, g2f3, g3f3, g4f3, g5f3, g6f3, g7f3 to find
a nonzero vector in L of length at most 2(m−1)/2(detL)1/m: for example, the vector

(2558700/n3)x8

− (1172149197300/n3)x7

− (16962979598492916000000000000000000000000000000000000/n3)x6

− (9080495056404508812155000000000000000000000000000000/n3)x5

− (16268872584260106363071226779000000000000000000000000/n3)x4

− (4786092732625488403021583597543361000000000000000000/n3)x3

− (68525665600669610580610714527465995863869000000000000/n3)x2

− (4866470374300829151096400546244449180155160401000000/n3)x

+ (19654220351564720341671319570621613333314080770830407/n3)1.

The only rational root of this polynomial is s/H where s = 476511. The vector
(94, 33, 40, 72, 103, 7, 64, 25, 19, 9, 106, 16, 62, 60, 69, 13, 119, 157, 187, 165, 105) is the
residue representation of s; the distance from s to u is approximately 79.41.

Theorem 7.1 guaranteed that this procedure would find every s within distance
lg n − lg λ ≈ 84.8 of u; here λ = m1/2k(2H)α(1+1/2k). Even better, Theorem
2.3 guaranteed that this procedure would find every s within distance − lg γ ≈
88.28 of u; here γ = m1/2k(2H)(m−1)/2kn(k+1)/2m−1. Both bounds are far above
(lg n − lg 2H)/2 ≈ 65.16.

References

[1] —, Annual ACM symposium on theory of computing: proceedings of the 31st symposium
(STOC ’99) held in Atlanta, GA, May 1–4, 1999, Association for Computing Machinery,
New York, 1999. ISBN 1–58113–067–8. MR 2001f:68004. See [14].

[2] —, Proceedings of the 32nd annual ACM symposium on theory of computing, Association for

Computing Machinery, New York, 2000. ISBN 1–58113–184–4. See [5].
[3] Leonard M. Adleman, Carl Pomerance, Robert S. Rumely, On distinguishing prime numbers

from composite numbers, Annals of Mathematics 117 (1983), 173–206. ISSN 0003–486X. MR
84e:10008. Citations in this paper: §5.

[4] Daniel Bleichenbacher, Compressing Rabin signatures, in [29] (2004), 126–128. Citations in
this paper: §4.

[5] Dan Boneh, Finding smooth integers in short intervals using CRT decoding, in [2] (2000),
265–272; see also newer version [6]. Citations in this paper: §1, §1, §1, §7.

[6] Dan Boneh, Finding smooth integers in short intervals using CRT decoding, Journal of
Computer and System Sciences 64 (2002), 768–784; see also older version [5]. ISSN 0022–0000.
MR 1 912 302. URL: http://crypto.stanford.edu/~dabo/abstracts/CRTdecode.html.

[7] Dan Boneh, Glenn Durfee, Nick Howgrave-Graham, Factoring N = prq for large r, in [35]

(1999), 326–337. URL: http://crypto.stanford.edu/~dabo/abstracts/prq.html. Citations
in this paper: §1, §1, §5.

[8] Don Coppersmith, Finding a small root of a univariate modular equation, in [27] (1996),
155–165; see also newer version [10]. MR 97h:94008. Citations in this paper: §1, §1, §1, §3.

REDUCING LATTICE BASES TO FIND SMALL-HEIGHT VALUES OF POLYNOMIALS 19

[9] Don Coppersmith, Finding a small root of a bivariate integer equation; factoring with high

bits known, in [27] (1996), 178–189; see also newer version [10]. MR 97h:94009. Citations in
this paper: §1, §5.

[10] Don Coppersmith, Small solutions to polynomial equations, and low exponent RSA
vulnerabilities, Journal of Cryptology 10 (1997), 233–260; see also older version [8] and [9].

ISSN 0933–2790. MR 99b:94027.
[11] Don Coppersmith, Finding small solutions to small degree polynomials, in [32] (2001), 20–31.

MR 2003f:11034. URL: http://cr.yp.to/bib/entries.html#2001/coppersmith. Citations in
this paper: §3, §3.

[12] Don Coppersmith, Nick Howgrave-Graham, S. V. Nagaraj, Divisors in residue classes,
constructively (2004). URL: http://eprint.iacr.org/2004/339. Citations in this paper: §5,
§6.

[13] Michael Darnell (editor), Cryptography and coding: proceedings of the 6th IMA International

Conference held at the Royal Agricultural College, Cirencester, December 17–19, 1997,
Lecture Notes in Computer Science, 1355, Springer-Verlag, 1997. ISBN 3–540–63927–6. MR
99g:94019. See [19].

[14] Oded Goldreich, Dana Ron, Madhu Sudan, Chinese remaindering with errors, in [1] (1999),

225–234; see also newer version [15]. MR 2001i:68050. URL: http://theory.lcs.mit.edu/
~madhu/papers.html. Citations in this paper: §1, §1, §7.

[15] Oded Goldreich, Dana Ron, Madhu Sudan, Chinese remaindering with errors, IEEE
Transactions on Information Theory 46 (2000), 1330–1338; see also older version [14]. ISSN

0018–9448. MR 2001k:11005. URL: http://theory.lcs.mit.edu/~madhu/papers.html.
[16] Ronald L. Graham, Jaroslav Nešetřil (editors), The mathematics of Paul Erdős. I, Algorithms

and Combinatorics, 13, Springer-Verlag, Berlin, 1997. ISBN 3–540–61032–4. MR 97f:00032.
See [22].

[17] Venkatesan Guruswami, Madhu Sudan, Improved decoding of Reed-Solomon and algebraic-
geometry codes, IEEE Transactions on Information Theory 45 (1999), 1757–1767. ISSN 0018–
9448. MR 2000j:94033. URL: http://theory.lcs.mit.edu/~madhu/bib.html. Citations in
this paper: §1, §7.

[18] Johan H̊astad, Solving simultaneous modular equations of low degree, SIAM Journal on
Computing 17 (1988), 336–341. ISSN 0097–5397. MR 89e:68049. URL: http://www.nada.

kth.se/~johanh/papers.html. Citations in this paper: §1.
[19] Nicholas Howgrave-Graham, Finding small roots of univariate modular equations revisited,

in [13] (1997), 131–142. MR 99j:94049. Citations in this paper: §1, §1, §1, §5.
[20] Nicholas Howgrave-Graham, Computational mathematics inspired by RSA, Ph.D. thesis,

1998. URL: http://cr.yp.to/bib/entries.html#1998/howgrave-graham. Citations in this
paper: §1, §3, §5, §6.

[21] Nicholas Howgrave-Graham, Approximate integer common divisors, in [32] (2001), 51–66. MR
2003h:11160. URL: http://cr.yp.to/bib/entries.html#2001/howgrave-graham. Citations
in this paper: §1.

[22] Sergei Konyagin, Carl Pomerance, On primes recognizable in deterministic polynomial time,

in [16] (1997), 176–198. MR 98a:11184. URL: http://cr.yp.to/bib/entries.html#1997/

konyagin. Citations in this paper: §1, §5.
[23] Arjen K. Lenstra, Hendrik W. Lenstra, Jr., László Lovász, Factoring polynomials with

rational coefficients, Mathematische Annalen 261 (1982), 515–534. ISSN 0025–5831. MR

84a:12002. URL: http://cr.yp.to/bib/entries.html#1982/lenstra-lll. Citations in this
paper: §2.

[24] Hendrik W. Lenstra, Jr., Divisors in residue classes, Mathematics of Computation 42

(1984), 331–340. ISSN 0025–5718. MR 85b:11118. URL: http://www.jstor.org/sici?sici=

0025-5718(198401)42:165<331:DIRC>2.0.CO;2-6. Citations in this paper: §1, §1, §5.
[25] Hendrik W. Lenstra, Jr., Lattices (2006); chapter in this book. Citations in this paper: §2.
[26] Rüdiger Loos, Computing rational zeros of integral polynomials by p-adic expansion, SIAM

Journal on Computing 12 (1983), 286–293. ISSN 0097–5397. MR 85b:11123. Citations in this

paper: §2.
[27] Ueli M. Maurer (editor), Advances in cryptology—EUROCRYPT ’96: Proceedings of

the Fifteenth International Conference on the Theory and Application of Cryptographic
Techniques held in Saragossa, May 12–16, 1996, Lecture Notes in Computer Science, 1070,

Springer-Verlag, Berlin, 1996. ISBN 3–540–61186–X. MR 97g:94002. See [8], [9].

20 DANIEL J. BERNSTEIN

[28] Teo Mora (editor), Applied algebra, algebraic algorithms and error-correcting codes:

proceedings of the sixth international conference (AAECC-6) held in Rome, July 4–8, 1988,
Lecture Notes in Computer Science, 357, Springer-Verlag, Berlin, 1989. ISBN 3–540–51083–4.
MR 90d:94002. See [34].

[29] Tatsuaki Okamoto (editor), Topics in cryptology—CT-RSA 2004: the cryptographers’ track

at the RSA Conference 2004, San Francisco, CA, USA, February 23–27, 2004, proceedings,
Lecture Notes in Computer Science, Springer, Berlin, 2004. ISBN 3–540–20996–4. MR
2005d:94157. See [4].

[30] Franz Pichler (editor), Advances in cryptology—EUROCRYPT ’85: proceedings of a

workshop on the theory and application of cryptographic techniques (EUROCRYPT ’85)
held in Linz, April 1985, Lectures Notes in Computer Science, 219, Springer-Verlag, 1986.
ISBN 3–540–16468–5. MR 87d:94003. See [31].

[31] Ronald L. Rivest, Adi Shamir, Efficient factoring based on partial information, in [30] (1986),

31–34. MR 851 581. Citations in this paper: §1, §5.
[32] Joseph H. Silverman (editor), Cryptography and lattices: proceedings of the 1st International

Conference (CaLC 2001) held in Providence, RI, March 29–30, 2001, Lecture Notes
in Computer Science, 2146, Springer-Verlag, Berlin, 2001. ISBN 3–540–42488–1. MR

2002m:11002. See [11], [21].
[33] Madhu Sudan, Decoding of Reed Solomon codes beyond the error-correction bound, Journal

of Complexity 13 (1997), 180–193. ISSN 0885–064X. MR 98f:94024. URL: http://theory.
lcs.mit.edu/~madhu/bib.html. Citations in this paper: §1, §7.

[34] Brigitte Vallée, Marc Girault, Philippe Toffin, How to guess ℓth roots modulo n by reducing
lattice bases, in [28] (1989), 427–442. MR 90k:11168. URL: http://cr.yp.to/bib/entries.
html#1989/vallee. Citations in this paper: §1.

[35] Michael Wiener (editor), Advances in cryptology—CRYPTO ’99, Lecture Notes in Computer

Science, 1666, Springer-Verlag, Berlin, 1999. ISBN 3–5540–66347–9. MR 2000h:94003. See [7].

Department of Mathematics, Statistics, and Computer Science, The University of

Illinois at Chicago, Chicago, IL 60607–7045

E-mail address: djb@cr.yp.to

