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Theorem 1 (Manindra Agrawal, Neeraj Kayal, Nitin Saxena). Let n be a positive
integer. Let s be a positive integer. Let r be an odd prime number. Let q be the
largest prime divisor of r− 1. Assume that n has no prime divisor smaller than s;
that n(r−1)/q mod r /∈ {0, 1}; that

(
q+s−1

s

)
≥ n2b

√
rc; and that (x− b)n = xn − b in

the ring (Z/n)[x]/(xr − 1) for all positive integers b ≤ s. Then n is a power of a
prime.

Proof. There is a prime divisor p of n such that p(r−1)/q mod r /∈ {0, 1}. (Otherwise
p(r−1)/q mod r ∈ {0, 1} for every prime divisor p of n, so n(r−1)/q mod r ∈ {0, 1};
contradiction.)

The order of p in (Z/r)∗ is at least q. (Otherwise it is coprime to q; but it
divides r−1, because pr−1 mod r = 1; so it divides (r−1)/q; so p(r−1)/q mod r = 1,
contradiction.)

Select an irreducible polynomial h in (Z/p)[x] dividing xr−1 + xr−2 + · · · + 1.
The degree of h is at least q. (For readers not familiar with cyclotomic polynomials:
Start from the fact that h divides xpd−x, where d is the degree of h. By construction
h also divides xr − 1, so it divides xgcd {pd−1,r} − 1. If d < q then pd − 1 is coprime
to r, so h divides x − 1, so h = x − 1; but x − 1 does not divide xr−1 + · · · + 1,
because r 6= 0 in Z/p.)

Define F as the finite field (Z/p)[x]/h. Define G as the subgroup of F ∗ generated
by {x− 1, x− 2, . . . , x− s}: i.e., the set of products (x− 1)e1 · · · (x− s)es mod h.

G has at least
(
q+s−1

s

)
≥ n2b

√
rc elements: namely, all (x−1)e1 · · · (x−s)es mod h

with e1 + · · ·+ es ≤ q − 1. (If e1 + · · ·+ es ≤ q − 1 and f1 + · · ·+ fs ≤ q − 1 and
(x− 1)e1 · · · (x− s)es ≡ (x− 1)f1 · · · (x− s)fs (modh), then (x− 1)e1 · · · (x− s)es =
(x−1)f1 · · · (x−s)fs ; but p ≥ s, so x−1, . . . , x−s are distinct irreducible polynomials
in (Z/p)[x], so (e1, . . . , es) = (f1, . . . , fs).)

Find a generator (x − 1)e1 · · · (x − s)es mod h of G. Lift this generator to the
polynomial g = (x− 1)e1 · · · (x− s)es in (Z/p)[x]. The order of g mod h is the size
of G, so it is at least n2b

√
rc.

By hypothesis (x − b)n ≡ xn − b (modxr − 1) for 1 ≤ b ≤ s. Thus gn =
((x− 1)n)e1 · · · ((x− s)n)es ≡ (xn − 1)e1 · · · (xn − s)es = g(xn) (modxr − 1).

Define T as the set of positive integers e such that ge ≡ g(xe) (modxr − 1).
Then n ∈ T . Furthermore, gp = g(xp), so p ∈ T ; and g1 = g(x1), so 1 ∈ T .

T is closed under multiplication. (If gf ≡ g(xf ) (modxr − 1) then g(xe)f ≡
g(xef ) (modxer−1) so g(xe)f ≡ g(xef ) (modxr−1); if also ge ≡ g(xe) (modxr−1)
then gef = (ge)f ≡ g(xe)f ≡ g(xef ).) Thus every product nipj is in T .
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Consider the products nipj with 0 ≤ i ≤ b
√
rc and 0 ≤ j ≤ b

√
rc. There are

(b
√
rc + 1)2 > r such pairs (i, j), so there are distinct pairs (i, j), (k, `) such that

nipj ≡ nkp` (mod r). Write t = nipj and u = nkp`. Then t ≡ u (mod r), so
g(xt) ≡ g(xu) (modxr − 1); but t ∈ T and u ∈ T , so g(xt) ≡ gt and g(xu) ≡ gu.
Thus gt ≡ gu (modxr − 1). Consequently gt ≡ gu (modh); in other words, t − u
is divisible by the order of g mod h. But t and u are positive integers bounded by
ni+j ≤ n2b

√
rc, which is at most the order of g mod h, so t = u. In other words,

ni−k = pj−`. Hence n is a power of p. �
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