AN EXPOSITION OF THE AGRAWAL-KAYAL-SAXENA PRIMALITY-PROVING THEOREM

DANIEL J. BERNSTEIN

Theorem 1 (Manindra Agrawal, Neeraj Kayal, Nitin Saxena). Let n be a positive

 integer. Let s be a positive integer. Let r be an odd prime number. Let q be the largest prime divisor of $r-1$. Assume that n has no prime divisor smaller than s; that $n^{(r-1) / q} \bmod r \notin\{0,1\}$; that $\binom{q+s-1}{s} \geq n^{2\lfloor\sqrt{r}\rfloor}$; and that $(x-b)^{n}=x^{n}-b$ in the ring $(\mathbf{Z} / n)[x] /\left(x^{r}-1\right)$ for all positive integers $b \leq s$. Then n is a power of a prime.Proof. There is a prime divisor p of n such that $p^{(r-1) / q} \bmod r \notin\{0,1\}$. (Otherwise $p^{(r-1) / q} \bmod r \in\{0,1\}$ for every prime divisor p of n, so $n^{(r-1) / q} \bmod r \in\{0,1\}$; contradiction.)

The order of p in $(\mathbf{Z} / r)^{*}$ is at least q. (Otherwise it is coprime to q; but it divides $r-1$, because $p^{r-1} \bmod r=1$; so it divides $(r-1) / q$; so $p^{(r-1) / q} \bmod r=1$, contradiction.)

Select an irreducible polynomial h in $(\mathbf{Z} / p)[x]$ dividing $x^{r-1}+x^{r-2}+\cdots+1$. The degree of h is at least q. (For readers not familiar with cyclotomic polynomials: Start from the fact that h divides $x^{p^{d}}-x$, where d is the degree of h. By construction h also divides $x^{r}-1$, so it divides $x^{\mathrm{gcd}\left\{p^{d}-1, r\right\}}-1$. If $d<q$ then $p^{d}-1$ is coprime to r, so h divides $x-1$, so $h=x-1$; but $x-1$ does not divide $x^{r-1}+\cdots+1$, because $r \neq 0$ in \mathbf{Z} / p.)

Define F as the finite field $(\mathbf{Z} / p)[x] / h$. Define G as the subgroup of F^{*} generated by $\{x-1, x-2, \ldots, x-s\}$: i.e., the set of products $(x-1)^{e_{1}} \cdots(x-s)^{e_{s}} \bmod h$.
G has at least $\binom{q+s-1}{s} \geq n^{2\lfloor\sqrt{r}\rfloor}$ elements: namely, all $(x-1)^{e_{1}} \cdots(x-s)^{e_{s}} \bmod h$ with $e_{1}+\cdots+e_{s} \leq q-1$. (If $e_{1}+\cdots+e_{s} \leq q-1$ and $f_{1}+\cdots+f_{s} \leq q-1$ and $(x-1)^{e_{1}} \cdots(x-s)^{e_{s}} \equiv(x-1)^{f_{1}} \cdots(x-s)^{f_{s}}(\bmod h)$, then $(x-1)^{e_{1}} \cdots(x-s)^{e_{s}}=$ $(x-1)^{f_{1}} \cdots(x-s)^{f_{s}}$; but $p \geq s$, so $x-1, \ldots, x-s$ are distinct irreducible polynomials in $(\mathbf{Z} / p)[x]$, so $\left(e_{1}, \ldots, e_{s}\right)=\left(f_{1}, \ldots, f_{s}\right)$.)

Find a generator $(x-1)^{e_{1}} \cdots(x-s)^{e_{s}} \bmod h$ of G. Lift this generator to the polynomial $g=(x-1)^{e_{1}} \cdots(x-s)^{e_{s}}$ in $(\mathbf{Z} / p)[x]$. The order of $g \bmod h$ is the size of G, so it is at least $n^{2\lfloor\sqrt{r}\rfloor}$.

By hypothesis $(x-b)^{n} \equiv x^{n}-b\left(\bmod x^{r}-1\right)$ for $1 \leq b \leq s$. Thus $g^{n}=$ $\left((x-1)^{n}\right)^{e_{1}} \cdots\left((x-s)^{n}\right)^{e_{s}} \equiv\left(x^{n}-1\right)^{e_{1}} \cdots\left(x^{n}-s\right)^{e_{s}}=g\left(x^{n}\right)\left(\bmod x^{r}-1\right)$.

Define T as the set of positive integers e such that $g^{e} \equiv g\left(x^{e}\right)\left(\bmod x^{r}-1\right)$. Then $n \in T$. Furthermore, $g^{p}=g\left(x^{p}\right)$, so $p \in T$; and $g^{1}=g\left(x^{1}\right)$, so $1 \in T$.
T is closed under multiplication. (If $g^{f} \equiv g\left(x^{f}\right)\left(\bmod x^{r}-1\right)$ then $g\left(x^{e}\right)^{f} \equiv$ $g\left(x^{e f}\right)\left(\bmod x^{e r}-1\right)$ so $g\left(x^{e}\right)^{f} \equiv g\left(x^{e f}\right)\left(\bmod x^{r}-1\right)$; if also $g^{e} \equiv g\left(x^{e}\right)\left(\bmod x^{r}-1\right)$ then $g^{e f}=\left(g^{e}\right)^{f} \equiv g\left(x^{e}\right)^{f} \equiv g\left(x^{e f}\right)$.) Thus every product $n^{i} p^{j}$ is in T.

[^0]Consider the products $n^{i} p^{j}$ with $0 \leq i \leq\lfloor\sqrt{r}\rfloor$ and $0 \leq j \leq\lfloor\sqrt{r}\rfloor$. There are $(\lfloor\sqrt{r}\rfloor+1)^{2}>r$ such pairs (i, j), so there are distinct pairs $(i, j),(k, \ell)$ such that $n^{i} p^{j} \equiv n^{k} p^{\ell}(\bmod r)$. Write $t=n^{i} p^{j}$ and $u=n^{k} p^{\ell}$. Then $t \equiv u(\bmod r)$, so $g\left(x^{t}\right) \equiv g\left(x^{u}\right)\left(\bmod x^{r}-1\right)$; but $t \in T$ and $u \in T$, so $g\left(x^{t}\right) \equiv g^{t}$ and $g\left(x^{u}\right) \equiv g^{u}$. Thus $g^{t} \equiv g^{u}\left(\bmod x^{r}-1\right)$. Consequently $g^{t} \equiv g^{u}(\bmod h)$; in other words, $t-u$ is divisible by the order of $g \bmod h$. But t and u are positive integers bounded by $n^{i+j} \leq n^{2\lfloor\sqrt{r}\rfloor}$, which is at most the order of $g \bmod h$, so $t=u$. In other words, $n^{i-k}=p^{j-\ell}$. Hence n is a power of p.

Department of Mathematics, Statistics, and Computer Science (M/C 249), The University of Illinois at Chicago, Chicago, IL 60607-7045

Email address: djb@cr.yp.to

[^0]: Date: 20020808.
 1991 Mathematics Subject Classification. Primary 11Y16.

