AN EXPOSITION OF THE AGRAWAL-KAYAL-SAXENA PRIMALITY-PROVING THEOREM

DANIEL J. BERNSTEIN

Theorem 1 (Manindra Agrawal, Neeraj Kayal, Nitin Saxena). Let n be a positive integer. Let q and r be prime numbers. Let S be a finite set of integers. Assume that q divides $r-1$; that $n^{(r-1) / q} \bmod r \notin\{0,1\}$; that $\operatorname{gcd}\left\{n, b-b^{\prime}\right\}=1$ for all distinct $b, b^{\prime} \in S$; that $\binom{q+\# S-1}{\# S} \geq n^{2\lfloor\sqrt{r}\rfloor}$; and that $(x+b)^{n}=x^{n}+b$ in the ring $(\mathbf{Z} / n)[x] /\left(x^{r}-1\right)$ for all $b \in S$. Then n is a power of a prime.

Proof. Find a prime divisor p of n such that $p^{(r-1) / q} \bmod r \notin\{0,1\}$. (If every prime divisor p of n has $p^{(r-1) / q} \bmod r \in\{0,1\}$ then $n^{(r-1) / q} \bmod r \in\{0,1\}$.)

By hypothesis, $(x+b)^{n}=x^{n}+b$ in $\mathbf{F}_{p}[x] /\left(x^{r}-1\right)$ for all $b \in S$. Substitute $x^{n^{i}}$ for $x:\left(x^{n^{i}}+b\right)^{n}=x^{n^{i+1}}+b$ in $\mathbf{F}_{p}[x] /\left(x^{n^{i} r}-1\right)$, hence in $\mathbf{F}_{p}[x] /\left(x^{r}-1\right)$. By induction, $(x+b)^{n^{i}}=x^{n^{i}}+b$ for all $i \geq 0$. By Fermat's little theorem, $(x+b)^{n^{i} p^{j}}=\left(x^{n^{i}}+b\right)^{p^{j}}=x^{n^{i} p^{j}}+b$ for all $j \geq 0$.

Consider the products $n^{i} p^{j}$ with $0 \leq i \leq\lfloor\sqrt{r}\rfloor$ and $0 \leq j \leq\lfloor\sqrt{r}\rfloor$. There are $(\lfloor\sqrt{r}\rfloor+1)^{2}>r$ such pairs (i, j), so there are distinct pairs $(i, j),(k, \ell)$ such that $n^{i} p^{j} \equiv n^{k} p^{\ell}(\bmod r)$. Write $t=n^{i} p^{j}$ and $u=n^{k} p^{\ell}$. Then $(x+b)^{t}=x^{t}+b=$ $x^{u}+b=(x+b)^{u}$ in $\mathbf{F}_{p}[x] /\left(x^{r}-1\right)$ for all $b \in S$.

Find an irreducible polynomial h in $\mathbf{F}_{p}[x]$ dividing $\left(x^{r}-1\right) /(x-1)$. A standard fact about cyclotomic polynomials is that $\operatorname{deg} h$ is the order of p modulo r; so $\operatorname{deg} h$ is a multiple of q; so $\operatorname{deg} h \geq q$.

Now $(x+b)^{t}=(x+b)^{u}$ in the finite field $\mathbf{F}_{p}[x] / h$ for all $b \in S$. Note that $x+b \in\left(\mathbf{F}_{p}[x] / h\right)^{*}$, since $\operatorname{deg} h \geq q \geq 2$. Define G as the subgroup of $\left(\mathbf{F}_{p}[x] / h\right)^{*}$ generated by $\{x+b: b \in S\}$; then $g^{t}=g^{u}$ for all $g \in G$.
G has at least $\binom{q+\# S-1}{\# S}$ elements: specifically, all products $\prod_{b \in S}(x+b)^{e_{b}}$ with $\sum_{b} e_{b} \leq q-1$. (The irreducibles $x+b$ are distinct in $\mathbf{F}_{p}[x]$, because each difference $(x+b)-\left(x+b^{\prime}\right)=b-b^{\prime}$ is coprime to n by hypothesis; so these products $\prod_{b \in S}(x+b)^{e_{b}}$ are distinct in $\mathbf{F}_{p}[x]$. These products have degree smaller than q, hence smaller than $\operatorname{deg} h$, so they remain distinct modulo h.)
G is a finite multiplicative subgroup of a field, so it has an element g of order $\# G$. But $g^{t}=g^{u}$, and $|t-u|<n^{2\lfloor\sqrt{r}\rfloor} \leq\binom{ q+\# S-1}{\# S} \leq \# G$, so $t=u$. In other words, $n^{i} p^{j}=n^{k} p^{\ell}$. If $i=k$ then $p^{j}=p^{\ell}$ so $(i, j)=(k, \ell)$, contradiction. Consequently n is a power of p.

Appendix: how the AKS algorithm works. Agrawal, Kayal, and Saxena use Theorem 1 to determine in polynomial time whether a given integer $n>1$ is prime.

The idea is to find a small odd prime r such that $n^{(r-1) / q} \bmod r \notin\{0,1\}$ and $\binom{q+s-1}{s} \geq n^{2\lfloor\sqrt{r}\rfloor}$; here q is the largest prime divisor of $r-1$, and s is any integer

[^0]on the same scale as q. A theorem of Fouvry implies that a suitable r exists on the scale of $(\log n)^{6}$. (A standard conjecture implies that a suitable r exists on the scale of $(\log n)^{2}$.)

Given such a (q, r, s), one can easily test that n has no prime divisors smaller than s, and test that $(x+b)^{n}=x^{n}+b$ in the $\operatorname{ring}(\mathbf{Z} / n)[x] /\left(x^{r}-1\right)$ for all $b \in S$ where $S=\{0,1, \ldots, s-1\}$. Any failure of the first test reveals a prime divisor of n. Any failure of the second test proves that n is composite. If both tests succeed, then n is a prime power by Theorem 1 . One can easily check whether n is a square, cube, etc. to see whether n is prime.

Department of Mathematics, Statistics, and Computer Science (M/C 249), The University of Illinois at Chicago, Chicago, IL 60607-7045

Email address: djb@cr.yp.to

[^0]: Date: 20020810.
 1991 Mathematics Subject Classification. Primary 11Y16.

