
MAG My Array Generator (a new strategy for random number generation) 
 
Abstract: MAG is an algorithm (cellular automata) that creates an apparently random stream. It 
is very simple and very fast. The performance is obtained by using an arbitrary wide word 
(multicolored cell) instead of traditional operating on a bit scale. Therefore eight basic operations 
are needed for creating a random word, which can be 16, 32, 64… bits wide. The MAG rule uses 
the selection programming structure as an alternative to Boolean / Algebraic functions for 
imposing complexity within the system. In addition, the MAG algorithm can be easily 
transformed to use a randomized approach to cipher design.  
 
Keywords: MAG, random number generator, cellular automata, fast algorithms, stream cipher 
design, non-classical cryptography. 
  
1 Introduction 
 
This paper is an evaluation of a computational peculiarity (essentially, cellular automata), which 
can be applied to the field of random number generation. This idea comes from an apparent 
disaccord between how computational operations are theoretically defined and their practical 
application in mathematics, physics and computing. 
 
Computational theory can be summarized as follows: 
 
[TCOI] Computation operations can be characterized from Babbage’s idea of an “Analytical 
Engine”:  
•  “(1) The arithmetic functions ×−+ ,,  are operations (where 0=− yx  if xy ≥ ).” 
•  “(2) Any sequence of operations is an operation.” 
•  “(3) Iteration. The n-fold iteration of an operation P (where n is the number in a specified 

register, whose content is not affected by P) is an operation.” 
•  “(4) Conditional iteration. If P is an operation and T is a test on the numbers in certain 

registers, then the result of iterating P until T succeeds is an operation. 
•  “(5) Conditional transfer. If P and Q are operations then the result of doing P if a test T 

succeeds, Q if it fails, is an operation.  
 

[C#PI] The simpler formulation from Bohm and Jacopini’s work demonstrates that all programs 
could be written in terms of only three control structures: 
•  (a) The sequence structure. 
•  (b) The selection structure. 
•  (c) The repetition structure. 
 
The above formulations can be translated to the programming lexicon as:  
•  (1) and (2) operations from Babbage’s Analytical engine and (a) structure are incorporated in 

the common computer languages which means that every statement is executed one after the 
other in the order in which they appear in the program.  

•  (3) operation and (c) structure are  for loop programming paradigm.  
•  (4) operation and (c) structure are while loop paradigm.   



•  (5) operation and (b) structure is if/then/else programming tool. 
 
From the practical application perspective, almost all mathematical expressions can be managed 
by (1) (2) (3) and (4) computational operations (Babbage) or by (a) and (c) programming 
structures (Bohm and Jacopini). In short: Babbage’s (5) operation or Bohm and Jacopini’s (b) 
structure are not normally used for the explicit inner working of an algorithm as a mathematical 
function. Below is an example of how (5) and (b) may be explicitly used in the algorithm. 
 
Example: Two variables x and y are used in the following function with the values 5 and 7 
respectively. The first step of the function is to compare x and y and to transform the first 
variable (x). If x < y add 4 to the x and keep only the rightmost value as a result, otherwise 
subtract 3 from x using the following rule: if the result is negative, add 10 to the result. A wheel 
with numbers from 0 to 9 can be imagined and the position can be changed going up for 4 places 
or going down 3 places. In this example, the pair (5, 7) is changed to the pair (9, 7). 
 

 
 
The second step is to transform the second variable y. Again, two variables are compared. If y < 
x add 4 otherwise subtract 3 in same fashion as above. In this case, the pair (9, 7) is changed to 
the pair (9, 1). From there, the first and second steps are repeated with the following results: 
(6, 5); (3, 2); (0, 9); (4, 6); (8, 0); (5, 4); (2, 1); (9, 5); (6, 9) and so on. 
 
One characteristic of above algorithm is that the transforming operation is arbitrary and is 
decided (on the fly) on the particular relations between elements of the pair in question. My 
research examines this attribute in order to develop a new approach to random number 
generation. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



2.0 Introduction to MAG (My Array Generator) Algorithm Design 
 

An unsigned 32-bit integer array [A; B; C; D; E ….] and 32-bit element “carry” are used as the 
data structure for manipulating output sequences: 
 

1. Compare A and B. 

2. Position the operation switch to 
+ or – according to the 
comparison outcome. 

3. The carry element is xored 
with element C (+) or xored with 
one complement of element C (-) 
to form the new value for the 
carry. 

4. The element D is xored with 
the carry to form a new value for 
element D. 

5. The value of element D is 
forwarded to the output. 

 

6. The whole operation is shifted 
to the right and all previous steps 
are repeated (B and C are 
compared, D changes the carry, 
and the carry changes E). 

 
It should be noted that only the carry element and element D change value through one algorithm 
iteration, as shown in the previous table, which explains MAG’s workings. 
 
2.1 Wolfram’s rule 30 cellular automata (CA) and MAG 
 
Stephen Wolfram’s rule 30 belongs to class 3 behavior cellular automata (CA). This class has a 
complex structure and can be regarded as a chaotic/random class. 
 
Rule 30 [p869 NKS] can be expressed as: 
 

•  algebraic expression is ]2,[ qrrqpMod +++   

•  logic expression is ]],[,[ rqOrpXor  

•  Visually rule looks like figure below, where newly formed cell depends on three cells 
from previous evolution. 

 



•  English formulation is [p27 NKS]: “First, look at each cell and its right-hand neighbor. If 
both of these were white on the previous step, then take the new color of the cell to be 
whatever the previous color of its left-hand neighbor was. Otherwise, take the new color 
to be the opposite of that.” 

 
There is a major difference between MAG and Stephen Wolfram’s rule 30 CA: 
 
The rules for a one-dimensional two-color cell CA are based on a switching system where all the 
possibilities of three two-colored cells are mapped. That mapping can be generalized (as 
algebraic, logical, even lexical expression), as is the case with rule 30. There is no 
straightforward way to apply this particular rule (or class 3 behavior with the same properties) to 
multicolor cells. Someone has to search for the rule empirically, which becomes exponentially 
more difficult when larger words are used.  
 
While traditional CA systems use two-color cells, MAG uses 32-bit (or any multi-bit word) color 
cells. The disproportion of cell sizes translates directly to the performance of the CA system. 
Using multicolor cells does not influence the 3rd class (chaotic) behavior of bits. Below is the 
distribution of the 1’s (for bits ranges 1-8, 2-9, 3-10, 4-11 …) for steams initialized by 32-bit 
unsigned integers 1, 2 (0…0001, 0…0010), which can illustrate the point: 
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MAG algorithm shows that algorithm selection criteria (Babbage’s conditional transfer) are 
actually underlying structure for class 3 behavior CA (which is only apparent in the lexical 
formulation of Wolfram’s rule 30). Consequently the MAG algorithm can be used for CA with 
arbitrary wide cells and still producing a random/chaotic evolution behaviors.  
 
 
 
 
 
 
 



3. 0 MAG Analysis 
 
There are only a few “algebraic” relations, which can be derived from the algorithm explained 
previously: 
 
 The dependence between the first generation child and parent, and second generation child and 
grandparent evolution cycles is shown in the next table. It is apparent that formulas cannot be 
written without the ±  sign, which indicates that there is considerable difficulty in expressing 
MAG in algebraic terms. 
 

Parent Child-Parent 
dependence 

Grandchild-Grandparent dependence 

A A+(X±D) (A+(X±D))+(( X±D±A±B±C) ±( D+( X±D±A±B±C)) 

B B+(X±D±A) (A+(X±D))+(( X±D±A±B±C) ±( D+( X±D±A±B±C)) ± 
(B+(X±D±A))) 

C C+(X±D±A±B) … 

D D+( X±D±A±B±C) … 

X 
(carry) 

X±D±A±B±C … 

 
A, B, C, D, … are array elements; 
X is the carry element and has the same word size as A, B, C, D, …; 
+ sign in tables is XOR; 
±  sign means either XOR or one complement of XOR is the transforming operation; 
 
It will be easy to reduce the tables’ dependences formulas if XOR was the only transforming 
operation. But because there is one complement XOR operation as well, instances of formulas 
tend to be more and more complex (and longer) evolution wise.  
 
Another approach to analyze MAG is to observe evolution transformations on the bit level. But 
there is difficulty from the fact that binary branching (if else) is decided on the word level. It is 
difficult to pinpoint which bit in the word is going to decide branching path (which word has 
greater binary value). 
 
It can be observed that there is no mathematical equations which can describe MAG as it is the 
case with Wolfram’s rule 30 (and for that matter rule 45) . That phenomenon implies that there is 
mechanical process, which cannot be defined by mathematical tools. In other words series of 
words produced by MAG is defined by initial state and cannot be reproduced or defined by any 
other means.  
 
On the other hand MAG complexity can be expressed by software testing methods, particularly 
by cyclomatic complexity. “Cyclomatic complexity [ACM] measures the amount of decision 
logic in a single software module. It is used for two related purposes in the structured testing 
methodology. First, it gives the number of recommended tests for software. Second, it is used 
during all phases of the software lifecycle, beginning with design, to keep software reliable, 



testable, and manageable. Cyclomatic complexity is based entirely on the structure of software’s 
control flow graph.” Below is simplified method for applying degree of complexity in respect to 
the binary branching of the program control. 
 
“If all decisions are binary and there are p binary decision predicates, v(G) = p + 1. A binary 
decision predicate appears on the control flow graph as a node with exactly two edges flowing 
out of it. Starting with one and adding the number of such nodes yields the complexity. This 
formula is a simple consequence of the complexity definition. A straight-line control flow graph, 
which has exactly one edge flowing out of each node except the module exit node, has 
complexity one. Each node with two edges out of it adds one to complexity.”[p 33 ST]  
 
MAG evolution uses binary branching through iteration. Therefore complexity of path which one 
cell evolves increases exponentially. From software testing point of view MAG algorithm is 
unmanageable (it is not possible to cover all paths for testing or to predict algorithm behavior).  
   
3.1 MAG’s repetition period 
 
It is apparent that the output stream cannot be unique forever. There are two possibilities, which 
will repeat the pattern eventually: 
 

1. The stream reaches the initial state and starts to repeat itself: 
A=> B=> C=> D=> E=> A=> B … 
 
2. The stream reaches some state where repeating of the stream occurs: 
A=> B=> C=> D=> C=> D=> C=> D … 

 
If one to one correspondence between elements in the stream exists then the stream will behave 
as shown in the case (1). The case (2) will happen if some state in the stream can be reached 
from two points (B=> C and D=> C).  
 
It is clear that the only transformation that occurs in MAG is xor and one complement of xor. In 
other words: from an array A (by MAG rule) an array A’ is formed and A is xored with A’ to 
produce B, which guarantees a unique output for any input. The evolving configuration of A can 
only produce B: A=>B. Also, MAG is reversible, (A<=B) which indicates one to one 
correspondence between evolution cycles (A�B).  
 
Because one to one correspondence was not established from the beginning of development, a 
period repetition test was designed which covers both cases (1 and 2) mentioned above. 
 
The period repetition test procedure is: 

•  The algorithm is run for a predefined number of iterations. 
•  If a starting point is not matched through evolution then the last iteration is recorded. 
•  The algorithm is run again and checking is performed to see if the last iteration is unique. 

 
The reasoning behind this test is: if the last sequence part is unique in respect to the whole 
stream, all the previous iterations are unique as well. 



The second issue about the period is: If the stream acts as in case one (1), does that stream walk 
through all possible states? And if not, what is the period dependence in respect to the number of 
cells and word length of the cells. To find the ratio of actual repetition periods to the maximum 
possible periods a set of empirical tests were performed. 
 
3.1.1 The Period Testing Environment 

 
There are two variables that can influence the period length. The variables are: word size (l) of 
the cell, and the number (n) of cells in array. The word size is varied employing 2-bit, 4-bit and 
6-bit lengths and the array size is varied from 8 to 17 elements. Low figures are chosen in an 
attempt to actually reach a point where a period occurs. Every combination of word size and 
array size (3 word size x 10 array size) is performed 64 times and then the mean is extracted. The 
mean plots then would be the basis for evaluation. During testing, figures for the 17-word array 
size could not be obtained in reasonable time (the repetition period test was conducted to 322  
levels of iteration). 
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Below are some deductions from the charts shown previously: 
•  The summary plots for 8 to 16 word array sizes shows that the number of iterations does not 

significantly vary in respect to word size. That means the sequence depends on word size 
linearly (sequences are twice or tree times larger for 4-bit and 6-bit word cell configurations). 

•  Different numbers for reaching a repetition point within one combination of word / array size 
is constantly observed. That collaborates with the proposition that the period can be different 
for different initializations. 



•  Constantly reaching the period (for 8 to 16 word array sizes) shows that the proposed 
algorithm’s every state of iteration produces a unique new state (one to one correspondence). 

•  It can be said that period trend of MAG rises with the amount of cells and it lies anywhere 
between Wolfram’s rules 30 and 45 (p260 NKS). During the testing of the MAG design 
when a 127 cells wide array was used, more than several hundreds of gigabytes of data was 
produced and tested for period repetition. The repetition point was not reached. 

 
3.2 MAG’s performance 
 
Two methods were used to determine the relative performance of the proposed algorithm. 
One method was to directly time the proposed algorithm and compare results with the Mersenne 
Twister, an algorithm which is widely regarded as the state-of-the-art in random number 
generators. The second approach was to analyse the number of computations per output for the 
proposed algorithm and compare that value with similar methodologies and figures. 
 
3.2.1 Mersenne Twister (MT) vs. MAG 
 
The source code (19937int.c) for the Mersenne Twister was found at 
http://random.mat.sbg.ac.at/news/ and that link is mentioned and recommended in the MT white 
paper. It is essentially the same as the source code in the white paper except that the output is an 
unsigned long integer, which is consistent with the proposed algorithm. 

 
Relevant hardware and software: 
Pentium MMX 200Mhz Intel processor  196 Mb RAM 
Operating system: Red Hat Linux version 6  GNU compiler and C language (shipped with Red 
Hat 6) 
 
Output size for both algorithms was 10,000,000 long unsigned 32-bit integers. Three case 
scenarios were applied: 
•  The MT and MAG algorithm output was via the “fwrite” c function on to a binary file. 
•  MT and MAG algorithm was iterated for production of 10,000,000 long unsigned 32-bit 

integers but no output was produced. 
•  The same as for case 2 (immediately above) except MAG was optimized (one loop was 

unrolled).  
 
The results indicate that MAG performs better. The following table summarizes the performance 
testing for MT and MAG. 
 
 

 MT MAG 
LINUX’s  time command User time in sec User time in sec 

Output via “fwrite” 15.110 13.630 

No output 5.710 3.690 

No output; MAG optimised 5.710 0.860 

 



3.2.2 Fast Software Ciphers vs. MAG 
 
A comparison is made between the numbers of simple operations contained in each algorithm. 
This method is used to compare the “(alleged) RC4” algorithm with the proposed (MAG) 
algorithm. The rationale for this approach lies in the fact that the proposed algorithm is far from 
an optimal design therefore any empirical test in these circumstances cannot reveal an objective 
result. Comparing C source code can at least give an indication of the proposed algorithm’s 
performance. Below are the ARC4 ((alleged) RC4) source code and MAG source code: 

 
i=(i+1) & 0xFF;   /* update i */  
ARC4 
tmpI=S[i]; 
j=(j+tmpI) & 0xFF;          /* update j */ 
tmpJ=S[j]; 
S[j]=tmpI;    /* swap S[i], S[j] */ 
S[i]=tmpJ; 
t=(tmpI+tmpJ) & 0xFF;        /* compute ``random'' 
index */ 

        *p ^= S[t];          /* XOR keystream into 
data */ 

There are four Boolean operations (three &”and” and one ^”xor”).  

There are also four assignments.  

 
if (ptr[compA] > ptr[compB])  
MAG 
 ptr[carry] ^= ptr[input]; 
else 
 ptr[carry] ^= (~ptr[input]); 
ptr[output] ^= ptr[carry]; 
outFile.write(reinterpret_cast<const 
char*>(&ptr[output]),WORDSIZE_32); 

One comparison. 

Either two or three Boolean operations (two ^”xor” or two ^”xor” and one ~”one 
complement”) depending on which branch is executed. 

Four assignments. 

 
If the above summary assumptions hold true, it can be asserted that the proposed algorithm is 
around four times faster than the ARC4 algorithm if a MAG cell is 32-bits wide (1 Byte vs. 4 
Bytes output for approximately the same operations). Also MAG is not limited to 32-bit output 
(may be 64-bit, 128-bit, etc.) as ARC4 is limited to one byte (B. Schnier actually proposed a 16-
bit version in his Applied Cryptography; while a 32-bit version requires a 322 element wide 
working array). 
 



3.3 MAG empirical randomness testing 
 

MAG output streams were tested for patterns in every stage of development (several gigabytes of 
data) and no patterns were found. Systematic (recorded) pattern testing was performed on 500 
megabytes of output data and the details of these results are discussed below.   
 
ENT, Diehard and CryptX-98 are test suites used for empirical testing of MAG and should 
represent the wide spectra of possible statistical analysis. The first two test suites (ENT and 
Diehard) are highly recommended in the sci.crypt newsgroup, an online community of 
cryptographers and interested parties. CryptX-98 is a QUT (Queensland University of 
Technology; Brisbane; Australia) developed program for testing stream ciphers, block ciphers 
and key generators using “black box” testing methods.  
 
First of all the seed is produced by the COMBO RNG, which is part of the DIEHARD testing 
suite [TD]. Secondly, the resulting seed is used to produce 50 files over 10 megabytes each. 
Following these procedures, three batteries of tests are applied to each file. 
 
It can be concluded that the 50 files produced by MAG pass the three batteries of tests (ENT, 
DIEHARD, CRYPTX-98), which suggests that considerable confidence can be accredited to 
MAG. The source code for repeating results can be found at http://www.geocities/radence_v or 
requested by email radence_v@yahoo.com. The next illustrations show 32-bit (RGBA) 
representations of MAG’s output in the .raw format using TomoVision freeware (Virtual Magic 
Inc. http://www.TomoVision.com).  
 

  
32 * 32 resolution; 32 bit color 256 * 256 resolution; 32 bit color 
 
 
 
 



3.4 About MAG non-linearity 
 
It appears that MAG algorithm is essentially a linear type of RNG. But that is not the case. If 
table from section 2.2 is analyzed closer, the two relations can be observed: 

•  a child cell is dependant on a corresponding parent and all cells between which can be 
transformed in exponentially different ways. The transforming function can be in N2  
states where N is number of elements in an array (pair D; D+( X±D±A±B±C)). 

•  Neighboring cells are different by at least one value with potential that one value in 
equation is inverse (pair A+(X±D); B+(X±D±A)). That practically means a child is 
produced by xoring corresponding parent and either neighboring cell or neighboring cell 
inverse. 

 
These correlations can not be linear in nature if XOR and one complement XOR is used as “±” 
operators. The empirical randomness testing performed on MAG suggests that usual patterns 
observed in linear type of RNG are not present in MAG. For example: 

•  Shift Register Family fails several Diehard tests [ACV] (MAG passes all). 
  

LATTICE PARKLOT MTUPLE OPSO BDAY OPERM RUNS RANK 

Pass FAIL FAIL FAIL FAIL Pass FAIL FAIL 

 
•  The similar table shows LCG (Linear Congruential Generators) [ACV] (MAG passes 

all). 
 

LATTICE MTUPLE OPSO BDAY OPERM RUNS RANK 

FAIL Pass FAIL FAIL Pass Pass Pass 

 
•  MAG passes Serial Correlation Coefficient [ACP p64-65] test (ENT testing suite). 

 
Also is important to mention that MAG consistently passes CryptX-98 Linear complexity test 
based on the Berlecamp Massey algorithm. 
 
4.0 About cryptography 
 
CA (cellular automata) is known to the cryptography community. The Wolfram’s rule 30 is 
around for quite some time (proposed 1985) [CCA] and Meier and Staffelbach [CP] presented 
crypto-analysis which showed that original proposal (127 bits wide CA) is not secure and 
suggesting security around 1000 bits wide CA. The latest Wolfram’s rule 30 proposal was 
convincingly presented in Wolfram’s NKS [page 605]. There is some of Wolfram’s comment s 
about rule 30 security [page 606 NKS] “… with standard methods of crypto-analysis, as well as 
a few others, there appears to be no easy way to deduce the key for rule 30 from any suitably 
chosen encrypting sequence…As a practical matter one can say that not only have direct 
attempts to find easy ways to deduce the key in rule 30 failed, but also-despite some considerable  
effort-little progress has been made in solving any of various problems that turn out to be 
equivalent to this one”.  



 
However it turns that security of the class 3 CA can be argued on computational irreducibility 
principle alone. The paradigm of computational irreducibility of the 3rd class CA, is explained 
and extensively argued in [NKS p737-750] and is applicable to MAG. In short, a class 3 CA 
evolution cannot be simulated by any other means but repeating the same CA with the same 
initial conditions. It is also important that steps in an evolution cannot be skipped or calculated in 
advance. To inspect the state in nth step of evolution all n steps between must be performed first. 
In that respect computational irreducibility stays in odds with current chaos theories which state 
that complexity resides in initial condition of the system and if an initial condition of the 
complex system is known there are laws / math which can predict future states of the system.  
 
From the practical point of view class 3 CA output cannot be patterned in any way. That 
phenomenon confirms the principle of computational irreducibility and it contradicts common 
view that every algorithm / machine (random number generator) will fail eventually empirical 
random testing. 
 
From that reasoning the reduction of the 3rd class CA evolution knowledge makes ideal situation 
for producing one way function. In particular the 3rd class CA evolution is easy to produce, and if 
partial information of that 3rd class CA evolution is given there remain only exhaustive search to 
recover original evolution state because only exact state and exact rule and exact step can give 
knowledge of the system (the computational irreducibility principle). Stephen Wolfram shows 
visually how reduction in evolution output exponentially decreases decrypting prospects [NKS 
p605].  
 
4.1 MAG and Cryptographical applicability 
 
It is straight forward procedure to reduce knowledge of the MAG stream. Simple hash function is 
applied to the every cell in the evolution. See following figure. 
 

 

This approach takes 
one byte from each 
of the 32-bit cells in 
the MAG output 
stream by applying 
the mod 256 
operation to create a 
pseudo random 
stream (secure 
stream). 

 
This proposal is based on the assertion that is not possible to derive any knowledge of the next 
evolution cycle without a full knowledge of the previous cycle and the corresponding algorithm 
rule. The table from section 2.2 is useful to illustrate the point. 
 
 
 



Parent Child-Parent 
dependence 

Grandchild-Grandparent dependence 

A A+(X±D) (A+(X±D))+(( X±D±A±B±C) ±( D+( X±D±A±B±C)) 

B B+(X±D±A) (A+(X±D))+(( X±D±A±B±C) ±( D+( X±D±A±B±C)) ± 
(B+(X±D±A))) 

C C+(X±D±A±B) … 

D D+( X±D±A±B±C) … 

X 
(carry) 

X±D±A±B±C … 

 
For example if the “mod 256” approach is used, one byte from the observed MAG stream clearly 
reduces 32-bit wide cell to 24-bit wide uncertainty for the corresponding cell in the MAG stream 
(the 32-bit amount of possible states that the cell can take is reduced to 24-bit). From the 
dependencies mentioned in section 2.2 and section 6 it may be possible to reduce one cell 
uncertainty further. Particularly relation of the pair A+(X±D) and B+(X±D±A) (neighbors; the 
relation column wise) appears to be more promising one. It transpires however, that further 
reduction is irrelevant (unless the reduction is total) for the time cost evaluation because to 
validate the guessed value of the cell, the whole evolution has to be used to predict the next 
cycle.  
 
Because the knowledge of one state of the evolution cycle is needed to accomplish complete 
knowledge of the system, the traveling with the relations column wise (guessing game) has to go 
through the whole column, which amounts to the relation step row wise (pair D; D+( 
X±D±A±B±C)). Furthermore to relate cells more than one step either column or row wise 
increases the uncertainty exponentially. 
 
If a cell’s possible values (amount of elements that satisfy relation from the observed byte to an 
unknown 32-bit word) is enumerated as g and the number of cells as n then the computational 
time cost can be expressed as )( ngO . Therefore if g is 1 then the cost is in polynomial time, 
otherwise (g>1) cost is in non-polynomial time and continues on exponentially, depending of the 
amount cells in an array. Essentially, to solve the MAG is an all or nothing proposition (the case 
g=1 or the case g>1), meaning that the reversing procedure (one-way function reversal) shall 
predict the whole evolution array state at once to qualify for a P class of problems. 
 
Other approaches to produce a pseudo random stream from MAG are: 

•  The proposal by Stephen Wolfram [p605 NKS], which essentially sample fewer cells to 
the crypto stream than are actually produced by the CA. That approach is affecting the 
performance of a cipher. For example if every fourth element of the MAG stream is put 
to the output the performance of MAG is about the same as ARC4 (which is the case with 
“mod256” version as well). 

•  The approach which combines a MAG 32-bit stream with a stream that is made by 
repeating a secret key to produce a pseudo random stream (secure stream). See next 
figure. This approach influences performance by adding one operation. 



 
 
4.2 MAG security / performance 
 
One aspect of MAG is that the algorithm is in O(1 )complexity in respect to the level of security (8-9 
basic operations is needed per byte regardless on desired security level?!). Security/performance 
examples for 32 and 64 bit word hardware are listed below, where first example is actually implemented 
one. 
   
For the 127 cell / 32-bit word / mod 256 hash variant 242=g  (where g is 32-bit / mod 256 hash) and 

127=n  (where n is number of cells) giving security magnitude from 1272  to 12724 )2(  and performance 
slightly slower than ARC4 (9 operations per byte output). 
 

For the 511 cell/ 64-bit word/ mod 322  hash variant 322=g  and 511=n  giving security magnitude from 
5112  to 51132 )2(  and performance around 4 times better than ARC4 (9 operations per 4 bytes output). 

 
The MAG implementation is written in C++ for 32-bit hardware and for research purpose only. Input is a 
seed (key) which has to be at least one  32-bit word (unsigned long int). Output is a pseudo random or a 
cryptographically secure pseudo random stream of desired length. The period check functionality is 
implemented as well (for more details see http://www.geocities/radence_v/). 
 
5.0 Discussion 
 
MAG computational irreducibility opens way for randomized approach to stream cipher design 
[SC]. The rationale behind this approach is to create an unfeasibly large problem for the crypto-
analysts to solve. The idea is to maximize the area of crypto analysts’ investigation while the 
secret key remains relatively small in size. For example, if there is large public random string,   
the secret key can specify which part of that public string is gong to be used for encryption. From   
crypto-analytical perspective, the only option is to search through the whole public random 
string. The security of this encryption scheme is a ratio of the size of the encrypted message to 
the size of the public random string.  
 
The MAG set of all possible states for particular setting (127 cells 32-bit wide setting gives 

12732 states) can replace public random string from randomized approach scheme. In the same 
way it is impossible to determine where the MAG hashed output string in question starts because 
the string position in the set is statistically / empirically indistinguishable. That MAG string is 
defined by evolution state only. If that state is hashed, that creates many to one relationship. 
There is only two ways to recover state of evolution. One is to search through 12732 bits long 



string (number of all MAG possible states). Other is to search through one to many relationship 

which has ratio of 
12724

1
 (Note that only complete knowledge of state evolution is needed for 

stepping through evolution). 
 
The advantage of the randomized approach is: A set of criteria such as linear complexity, 
nonlinearity, statistics, confusion and diffusion does not have to be addressed directly as is the 
case with more complicated system-theoretic approaches. The whole security issue is shifted to 
the computational irreducibility principle alone. 
 
The concept of security by obscurity can be applied to the MAG evolution as well. It is difficult 
to have any insight in a observed stream if the stream algorithm is unknown and there are no 
statistical biases. MAG empirical studies show lack of statistical biases MAG cell evolve by 
executing one of the two operations. If whole array iteration is examined, it can be seen that the 
two operations occurrence position cannot be predicted. For 127 cell wide MAG array there is 

1272  different function configurations which can evolve one step of an evolution. Because of 
high complexity of MAG from the algorithm testing perspective it is difficult to manage path 
coverage of MAG branching, especially if every branch path is equally possible. Therefore for 
every step through evolution, there is a different function (which is hidden by hash /one to many 
relationship) from the set of 1272  functions. 
 
6. Summary 
 
The MAG algorithm strategy shows some desirable attributes for creating an PRNG: 

•  There is no evidence of patterns or regularities to be found for the MAG algorithm 
sequence outputs.  

•  The test and comparison shows that MAG outperforms the best RNG / cipher (MT and 
ARC4).  

•  The empirical studies show that MAG’s period is relatively high (around N5.02  where N 
is the number of cells). Although there are no explicit (formal) guarantees for the period 
length, the period is easily tested against users’ requirements. 

•  It is easy to transform the MAG output as a primitive for the randomized stream design 
approach. All security depends on computational irreducibility principle alone. 

 
“The world can be seen as a process of flow and change, with the same material constantly going 
around and around in endless combinations. Geneticist Richard Lewontin called these scientists 
“Heraclitians,” after the Ionian philosopher who passionately and poetically argued that the 
world is in a constant state of flux. “When I read what Lewontin said,” says Arthur (Brian 
Arthur), “it was a moment of revelation. That’s when it finally became clear to me what was 
going on” I thought to myself, `Yes! We’re finally beginning to recover from Newton. `” [C 
p335] 
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