
The Stream Cipher Polar Bear

Johan H̊astad NADA
Royal Inst. of Technology

SE-10044 Stockholm, Sweden

Mats Näslund∗

Communications Security Lab
Ericsson Research

SE-16480 Stockholm, Sweden

April 29, 2005

Abstract

We propose a new stream cipher called “Polar Bear”. It combines
constructions used successfully in other situations. The key initialization
uses Rijndael, the steady state uses a dynamic table as in RC4 and we
guarantee a long period through the use of a linear feedback shiftregister.
The efficiency for short messages is better than that of RC4 while for
long messages Polar Bear is about a factor two behind in efficiency. On
the other hand, we believe our construction has a larger safety margin
compared to RC4.

1 Introduction

There is a big industry demand for secure and efficient stream ciphers, the mo-
bile/wireless communication sector being one of the foremost “consumers” of
such ciphers. The fact that stream ciphers do not expand messages, are toler-
ant to bit-errors1, etc, are desirable properties for use with narrow-bandwidth
wireless links and voice coders designed to perform well in the presence of a few
bit errors. From scientific point of view, there is also an interest to get a better
understanding for how to design stream ciphers, since many of the proposed
schemes in the past have been more or less severely attacked.

In response to the NESSIE call for primitives a few years ago, a number of
stream cipher proposals were submitted, but none “survived” since the there
was a feeling that none of the proposals was sufficiently secure and efficient.
The IST 6FP ECRYPT Network of Excellence has now therefore issued a new
open call, now directed only towards stream ciphers.

In this paper a stream cipher is presented in response to this call. The cipher
has been designed with goals:

∗Work described here has in part been supported by the Commission of the European
Communities through the IST program under contract IST-2002-507932. The information in
this document is provided as is, and no warranty is given or implied that the information is fit
for any particular purpose. The user thereof uses the information at its sole risk and liability.

1Of course, the error tolerance also open up for attacks on the integrity.

1

1. The cipher should be secure, meaning that no attacks (key-recovery or
distinguishing) better than brute force should be possible.

2. The cipher should be efficient, meaning that it should be substantially
faster than AES in counter-mode, when implemented in software.

3. The cipher should support various key sizes, at least up to 128 bits.

4. The cipher should support “re-keying” for packet-based communication,
allowing flexible choices for the size of the initialization values (IVs).

We feel we have achieved these goals. We would here also to state formally
that we have not inserted any hidden weakness into the construction.

2 Notation

Whenever we say “AES” or “Rijndael”, we refer to [2], and not the AES speci-
fication, [1], since we need the support for 256-bit blocks.

We use || to denote concatenation, and ⊕ denotes bit-wise modulo-2 sum
and +m denotes addition modulo 2m.

We use byte/word/WORD to denote 8/16/32-bit quantities, respectively.
Hexadecimal quantities are prefixed by ’0x’. If a, b, c, . . . are bytes, in a||b||c|| . . .,
a is the most significant byte etc.

Let T8 be the Rijndael S-box, i.e. T8(0) = 0x63, T8(0x01) = 0x7c,...,
T8(0xff) = 0x16. If w = w′||w′′ is a 2-byte word, we use T8(w) to denote
T8(w′)||T8(w′′), and similarly for WORDs.

We shall make use of arithmetic in F216 , which we throughout represent as

F2[y]/(y16 + y8 + y7 + y5 + 1).

Elements of this field shall sometimes represented by integers, where the integer
a =

∑15
i=0 ai2i represents the field element a(y) =

∑15
i=0 aiy

i in the standard
polynomial basis representation.

3 Cipher Specification

3.1 Informative Description

We first give an informal description of the cipher’s operation. The cipher
uses one 7-word (112-bit) LFSR R0 and one 9-word (144-bit) LFSR R1. These
are viewed as acting over F216 . Besides these registers, the internal state of the
cipher also depends on a word quantity, S, and a dynamic permutation of bytes,
D8.

The cipher is primarily designed for a key length of 128 bits but shorter key
lengths are accepted and we describe the modifications needed in Section 4.1.
The IV can be any number of bytes upto a maximum of 31. The IV size may
vary from message to message for a given key, if so desired.

2

The key schedule is (in the case of 128-bit keys) identical to the Rijndael
key schedule.

On each message to be processed, the cipher is initialized by taking the key
(more precisely, the expanded key), interpreting the IV as a cleartext block, and
applying a (slightly modified) five round Rijndael encryption with block length
256. The resulting cipher text block is loaded into R0 and R1. Finally, D8 is
initialized to equal the table T8, the Rijndael S-box, and S is set to zero.

Output is produced 4 bytes at a time. To this end, the two LFSRs are first
irregularly clocked, determined by S. Bytes are selected from R0, R1 and run
through the permutation D8 to produce the 4 output bytes. Selected entries in
D8 are swapped. Finally, S and R0 are modified in preparation for the next
output cycle. Entries in R1 are not modified apart from the LFSR stepping.

We now turn to the normative cipher specification.

3.2 Initialization and Key Schedule (Normative)

We use Rijndael with the parameters Nb = 8, Nr = 5, Nk = 4 with a full final
round including the MixColumns operation. The description in the following
two subsections is (intended to be) identical to that in [2], and is only reproduced
for self-containment.

3.2.1 Key Schedule

As already mentioned, the key schedule is identical to the Rijndael key schedule
with the above parameters, and may be done once per key, saving the expanded
key.

To be precise, from the 16-byte key (ki)15i=0, create an expanded key, (wj)47j=0

of WORDs by setting wj = k4j ||k4j+1||k4j+3||k4j+3 for 0 ≤ j ≤ 3 then for j
divisible by 4 set

wj = (T8(rotword(wj−1)⊕ Rcon(j/4))⊕ wj−4,

where rotword rotates the word one byte and Rcon are the round constants of
Rijndael. If j is not divisible by 4 we set

wj = wj−1 ⊕ wj−4.

The wk-values are in the sequel divided into round keys, the rth round key
consisting of W r = w8r, . . . , w8r+7, r = 0, . . . , 5. Each W r is interpreted as a
4 × 8 array of bytes, whose entry in row i, column j is the ith byte of w8r+j ,
0 ≤ i ≤ 3, 0 ≤ j ≤ 7.

3.2.2 Initialization

Let the IV contain n bytes, (IVi)n−1
i=0 where n ≤ 31. Set IVn = 0x10 and IVi = 0,

n+ 1 ≤ i ≤ 31.

3

Load the IV into an 4 × 8 array by setting

Ai,j = IV4j+i, 0 ≤ i ≤ 3, 0 ≤ j ≤ 7.

Perform a five round encryption of Rijndael as follows.
First the first round key, i.e. do

Ai,j =W 0
i,j ⊕Ai,j 0 ≤ i ≤ 3, 0 ≤ j ≤ 7

Repeat for r = 1, 2, 3, 4, 5:

1. Replace entries in A by applying T8 to each byte of A.

2. ShiftRows. First row is not shifted, second row is shifted one step right,
third row 3 is shifted three steps and fourth row is shifted four steps. (All
“shifts” are cyclic, allowing wrap around the edges of the matrix A.)

3. Apply MixColumns, i.e. treat each column as a degree 3 polynomial over
F28 and multiply it by a(x) = (1 + y)x3 + x2 + x+ y modulo x4 + 1.

4. Add a round key,

Ai,j =W r
i,j ⊕Ai,j 0 ≤ i ≤ 3, 0 ≤ j ≤ 7.

For i = 0, 1, . . .31, let bi be the bytes output, b4j+i = Ai,j , for 0 ≤ i ≤ 3 and
0 ≤ j ≤ 7. Form words zj = b2j+1||b2j , 0 ≤ j ≤ 15. Load zj into the jth state
of R0 for j = 0, 1, . . .6 and z7+j into the jth state of R1 for j = 0, 1, . . .8.

Initialize S to 0 and the table D8 is initialized to agree with T8, D8(j) =
T8(j), 0 ≤ j ≤ 255. This completes cipher initialization.

3.3 Next State Function (Normative)

After each update of the cipher’s internal state, four bytes are output. Before
the first output byte, and between consecutive output pairs of bytes, a state
update function is performed as specified below.

3.3.1 Stepping of registers

Let �0 = 7 and �1 = 9 be the lengths of the registers,
For i = 0, 1 let bi be the 14 + ith bit of S, i.e. bi � �S/214+i� mod 2. Ri is

stepped 2 + bi steps with a sparse feedback where one (1) such step consists of

• set f i ← θiRi
ji + µiRi

0 for constants θ
i, ji, and µi,

• set Ri
j ← Ri

j+1, j = 0, 1, . . . , �i − 2, and
• feedback Ri

�i−1 ← f i.

4

Specifically, R0, R1 are defined by the primitive polynomials

p0(x) � 0x5ceb · x7 + 0x8b5a · x6 + 1

and
p1(x) � 0x2c62 · x9 + 0x689a · x4 + 1,

so that j0 = 1, j1 = 5, µ0 = 0x5ceb, µ1 = 0x2c62, θ0 = 0x8b5a, θ1 = 0x689a.
After stepping both R0, R1 above, repeat the following for i = 0, 1 (do steps

1–4 first for i = 0, then repeat them for i = 1):

1. Let W i be the two leftmost 16-bit words of Ri (i.e. Ri
�i−1, R

i
�i−2).

2. Write W i as four bytes W i = αi
0||αi

1||αi
2||αi

3.

3. Let βi
j = D8(αi

j), j = 0, 1, 2, 3.

4. Swap elements in D8 by D8(αi
0) ← βi

2, D8(αi
1) ← βi

0, D8(αi
2) ← βi

3,
D8(αi

3)← βi
1.

Next,

• Define two 16-bit words γj � β1
2j ||β1

2j+1, j = 0, 1.

• Update S according to S ← S +16 γ0.

• Update R0 according to R0
5 ← R0

5 +16 γ1.

At this point, the internal state is updated, and the output is formed from the
above (β0

j , β
1
j)-pairs as described next.

3.4 Output Generation (Normative)

We form four output bytes b0||b1||b2||b3 where

bj � β0
j ⊕ β1

j .

If more output bytes are required, go back and iterate Next-state followed
by Output generation as above.

4 Variation

In a situation with frequent reinitialization we replace the dynamic table D8

used in the running of the algorithm by a smaller table D4 {0, 1}4 → {0, 1}4.
This variant might also be preferred in certain hardware situations.

We use the standard T8 as before in the initialization phase and D4 is only
used in the running of the algorithm. The table D4 is initialized by setting for
x �= 0

D4(x) = 1 + y2 + 1/x

5

where elements are treated as belonging to

F2[y]/(y4 + y + 1).

and D4(0) = 1 + y2.
In the running of the algorithm after the stepping of the registers we first

set W i to the leftmost word and run all remaining steps with nibbles replacing
bytes, and in particular we produce 4 output nibbles.

This is repeated with W i being the second leftmost word.
The word quantities γ0 and γ1 of the main version of the algorithm are now

replaced by two bytes, one in each iteration. The value used to update S and
R5 are the concatenation of the two values produced, the first value giving the
eight least significant bits.

4.1 Different length keys

We allow other key sizes in the range 80-120 bits which are supported by the
following modifications to the key schedule (no other changes are needed):

• If the key length is 96 bits we use Rijndael expansion with Nk = 3.

• If the bytes of the key are (ki)m−1
i=0 and the number of bytes, m, is not a

multiple of 4 then let k be the smallest multiple of 4 larger than m. Set
ki = T8(ki−m) for m ≤ i ≤ k − 1 and then treat this expanded key as a
96-bit or 128-bit key.

5 Motivation

Our philosophy of the design has been to re-use components that have proven
reliable in previous cryptographic constructions.

A very classical component is a LFSR which supplies basic properties such
as randomness of each byte produced and a guarantee of a long period. This
component exists in our construction as the register R1.

The register R0 is more speculative. It has partly the character of a tradi-
tional LFSR but since we modify its content depending on the contents of R1

and the dynamic table D8 we have no guarantees concerning its period. On the
other hand it is non-linear and thus it does not have the traditional weaknesses
of an LFSR.

A very important stream-cipher is given by RC4 [4] and the heart of that
algorithm is given by a dynamically changing table of size 256. The existence of
this component seems to rule out linear cryptanalysis. It does also, in a natural
way, create a large internal state ruling out many attacks. We find it natural to
use this excellent component.

The problems with the security of RC4 have been associated with insufficient
initialization and because of this our initialization is very different.

The problem of initializing some variables from a secret key and a publically
known initialization vector is in spirit very similar to a block encryption scheme.

6

In both cases we want mix a secret key with other information in an efficient
way. It is hence natural to reuse parts of a widely accepted block encryption
scheme such as Rijndael. The requirements for initialization is, however, much
less severe than for actual encryption. In view of this we feel that it is sufficient
to use only five of the 14 rounds used in 256-bit Rijndael.

It would be possible to use keys up to 256-bits in size, but as the results of
the initialization is 256 bits this might open up the possibility for “non-trivial”
attacks. Thus, while we do think that an increased length of the key does
increase security the current scheme might not be able to use the full potential
of a maximally long key.

5.1 The variant

The existence of the dynamic table D8 makes sure that we have a large internal
state and this adds to security. It does carry a cost as it has to be kept in
memory and initialized. This cost might be non-trivial in application with fre-
quent initialization and in situations where one processor has to switch between
different encryption sessions.

In a situation where we only encrypt small packets the full advantage of this
dynamic table is not fulfilled. This is the case as mixing is not immediate and
hence D8 will in fact only take on a very tiny fraction of all possible values as
it will remain close to the original table T8. In such a situation, replacing D8

by a smaller table eliminates most of the drawbacks while keeping some of the
advantages.

6 Security discussion

As already mentioned our construction is based on known primitives and our
hope for security is based on the lack of attacks/understanding of potential
weaknesses related to RC4 and Rijndael.

When encrypting long messages our construction behaves like a strengthened
version of RC4. We note that the dynamically changing table does seem to rule
out linear cryptanalysis over long sequences of bits. Indeed no such attack has
been proposed on RC4. The LFSRs make sure we do not enter a short loop.
It is true that due to the very large state space a small period is exceptionally
unlikely to happen in RC4 but turning this probably well founded hope into
certainty is certainly an added feature.

An additional feature of the construction is that we do not output values
in D8 but only the exclusive-or of two values. Thus the outputs have an even
lower relation to the internal state of the cipher than is the case for RC4. This
implies that it seems very difficult to accumulate any information of the internal
state by observing the output.

In short we feel that there is no indication that observing long sequences of
outputs from the proposed cipher will enable an attacker to mount an interesting
attack. In fact the security margins here seem substantial.

7

Another type of attack is to observe the first few bytes of output for many
different IVs. To be on the safe side we should, for the discussion, assume that
the IVs are different but chosen by the attacker.

When looking at the encryption of the first couple of bytes the general sit-
uation is similar to the analysis of a hash function or a block-cipher and in
both cases we have seen progress lately with new attacks. By our choices in the
construction in our case the analysis of block ciphers is the most relevant. Had
we chosen to use a full Rijndael encryption for the initialization the argument
would have been simple. Any method that could have been used to distinguish
the first output bytes from random bits could have been used to distinguish the
output from Rijndael from random bits. As substantial effort has been devoted
to this problem without any noticeable results this would be a strong argument
for security had we used the full Rijndael.

To speed up initialization we have limited the number of rounds of Rijndael
to 5 and since there are attacks [3] to distinguish the output of Rijndael of
upto 7 rounds from random bits the margin of safety does not appear to be
overwhelming.

The first output byte of Polar Bear is an exclusive-or of two applications of
T8 each to the linear combination of at least three outputs of Rijndael. Current
distinguishing attacks cannot make use of this limited information. In fact it
seems very hard to use this type of very special information but as there has
been no reason to analyze this situation the lack of such results is not a very
strong indication that such information is not useful. We do believe however
that it is not possible. It is always difficult to argue the non-existence of attacks
but let us at least note the following.

The only general method for extracting information is through linear crypt-
analysis. Linear cryptanalysis has been extensively studied in connection with
AES on 128-bit blocks and already (see [2]) 4 rounds is sufficient to bring down
any characteristic well below 2−64 which is the threshold for a nontrivial attack
on a 128 bit cipher. The 256-bit variant is not analyzed to the same extent but
we have an extra round to compensate for the larger block size.

7 Performance

Preliminary benchmarks are as follows (1400MHz Pentium, MS Visual C com-
piler) without any deeper optimization of Polar Bear code, except that using
tables for F216 multiplications and optimizations provided by the compiler. The
Rijndael coded that was included was of optimized nature. The timings are an
average over 1000 messages and includes time for initialization of a new IV but
not the key schedule. The key schedule time is the same as for Rijndael on 256
bit blocks. For large packets, the performance levels out at about 190Mb/s,
since the initialization overhead then becomes neglgible. Performance in cycles
per byte follows using the clock frequency.

Comparing to a simplistic implementation of RC4, the performance is faster
than RC4 on short packets (up to about 160Byte), and for large packets, RC4

8

Msg size (bytes) Mbits/s
32 135
64 155
128 170
256 180
512 184
1024 190

Table 1: Preliminary benchmarks (M = 220).

is faster by a factor slightly below 2.

7.1 Implementation Suggestions

While we have not made any optimizations, we point out some obvious tech-
niques that can be used. For initialization, clearly all implementation techniques
used to speed up AES/Rijndael applies and there is no need to repeat them here
and we refer to [2, 5]. Note that a standard Rijndael implementation needs to
tweaked in two ways

• Use 5 rounds.
• Apply MixColumn in all rounds.

7.1.1 Finite field operations

We make use of some arithmetic over F216 . Multiplication by (fixed) constants,
θ, in this field, e.g. needed for the LFSR implementation, can be done using
linearity

θ · v = θ · (v1y
8 + v0) = (θy8) · v1 ⊕ θ · v0,

where v1, v0 are the 8 most/least significant bits of v. Hence, two 256-word tables
containing the values of (θy8)v1 and θv0, for all v1, v0 can be used together with
some bit operations and an XOR.

Alternatively, note that the element y is a generator for the multiplicative
group of F216 for the representation chosen. Hence, pre-computed tables of
discrete logarithms and anti-logarithms can be used:

θ · v = ALOG[(DLOG[v] + cθ) mod (216 − 1)],

for a constant cθ = DLOG[θ].

8 Summary

We thank Per Austrin and Karl Norrman for helpful suggestions, including
programming assistance.

9

References

[1] Advanced Encryption Standard (AES), NIST FIPS-PUB 197, Nov 26,
2001.

[2] J. Daemen and V. Rijmen, The design of Rijndael, Springer-Verlag, 2002.

[3] H. Gilbert and M. Minier, A collision attack on 7 rounds of Rijndael.
Proceedings of third Advanced Encryption Standard conference, pp 230-
241, 2000, NIST.

[4] R. L. Rivest, The RC4 Encryption Algorithm RSA Data Security, Inc,
Mar 1992.

[5] The Rijndael page, www.iaik.tu-graz.ac.at/research/krypto/AES/old/˜rijmen/rijndael/

A Test-vector

All values in hex.

A.1 Key schedule

input key (len = 16):
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

expanded key (size 192):
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
62 63 63 63 62 63 63 63 62 63 63 63 62 63 63 63
9b 98 98 c9 f9 fb fb aa 9b 98 98 c9 f9 fb fb aa
90 97 34 50 69 6c cf fa f2 f4 57 33 0b 0f ac 99
ee 06 da 7b 87 6a 15 81 75 9e 42 b2 7e 91 ee 2b
7f 2e 2b 88 f8 44 3e 09 8d da 7c bb f3 4b 92 90
ec 61 4b 85 14 25 75 8c 99 ff 09 37 6a b4 9b a7
21 75 17 87 35 50 62 0b ac af 6b 3c c6 1b f0 9b
0e f9 03 33 3b a9 61 38 97 06 0a 04 51 1d fa 9f
b1 d4 d8 e2 8a 7d b9 da 1d 7b b3 de 4c 66 49 41
b4 ef 5b cb 3e 92 e2 11 23 e9 51 cf 6f 8f 18 8e
ab 42 42 63 95 d0 a0 72 b6 39 f1 bd d9 b6 e9 33

A.2 Initialization

IV (len = 16):
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

expanded IV:
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
10 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

10

R0 inital value: e58e 256f f115 9f2a 0d62 559f da11
R1 initial value: 29e1 740b a80b b5e5 bd53 899e e2ec 541b dbcb

A.3 Output keystream

key stream prefix:
0e 3c 44 72 cf 4c 7e aa f6 4b 12 e0 49 78 2a dc

11

