
The Stream Cipher Rabbit

Martin Boesgaard Mette Vesterager Thomas Christensen
Erik Zenner

CRYPTICO A/S
Fruebjergvej 3

2100 Copenhagen
Denmark

info@cryptico.com

Contents

1 Introduction 2

2 Stream Cipher Specification 2
2.1 Notation . 2
2.2 Key Setup Scheme . 3
2.3 IV Setup Scheme . 3
2.4 Next-state Function . 4
2.5 Counter System . 5
2.6 Extraction Scheme . 5
2.7 Encryption/decryption Scheme 6

3 Hidden Weaknesses 6

4 Security Properties 6
4.1 Key Setup Properties . 6
4.2 IV Setup Properties . 8
4.3 Period Length . 8
4.4 Partial Guessing . 9
4.5 Algebraic Attacks . 10
4.6 Correlation Attacks . 13
4.7 Differential Analysis . 14
4.8 Statistical Tests . 16

5 Strengths and Advantages 16
5.1 Compact design . 16
5.2 Security . 17

6 Design Rationale 17
6.1 Key and IV setup . 17
6.2 The g-function . 17
6.3 The counter system . 18
6.4 Symmetry and Mixing . 18

7 Computational Efficiency 19
7.1 Software Performance . 19
7.2 Hardware Estimates . 20

8 Advice for Implementers 21

1

1 Introduction

Rabbit is a synchronous stream cipher that was first presented at the Fast
Software Encryption workshop in 2003 [6]. Since then, an IV-setup function
has been designed [17], and additional security analysis has been completed.
No cryptographical weaknesses have been revealed until now.

The Rabbit algorithm can briefly be described as follows. It takes a 128-
bit secret key and a 64-bit IV (if desired) as input and generates for each
iteration an output block of 128 pseudo-random bits from a combination
of the internal state bits. Encryption/decryption is done by XOR’ing the
pseudo-random data with the plaintext/ciphertext. The size of the internal
state is 513 bits divided between eight 32-bit state variables, eight 32-bit
counters and one counter carry bit. The eight state variables are updated
by eight coupled non-linear functions. The counters ensure a lower bound
on the period length for the state variables.

Rabbit was designed to be faster than commonly used ciphers and to
justify a key size of 128 bits for encrypting up to 264 blocks of plaintext.
This means that for an attacker who does not know the key, it should not
be possible to distinguish up to 264 blocks of cipher output from the output
of a truly random generator, using less steps than would be required for an
exhaustive key search over 2128 keys.

2 Stream Cipher Specification

2.1 Notation

We use the following notation: ⊕ denotes logical XOR, & denotes logical
AND, � and � denote left and right logical bit-wise shift, ≪ and ≫ de-
note left and right bit-wise rotation, and � denotes concatenation of two bit
sequences. A[g..h] means bit number g through h of variable A. When num-
bering bits of variables, the least significant bit is denoted by 0. Hexadecimal
numbers are prefixed by ”0x”.

The internal state of the stream cipher consists of 513 bits. 512 bits
are divided between eight 32-bit state variables xj,i and eight 32-bit counter
variables cj,i, where xj,i is the state variable of subsystem j at iteration i, and
cj,i denotes the corresponding counter variable. There is one counter carry
bit, φ7,i, which needs to be stored between iterations. This counter carry
bit is initialized to zero. The eight state variables and the eight counters are
derived from the key at initialization.

2

2.2 Key Setup Scheme

The algorithm is initialized by expanding the 128-bit key into both the
eight state variables and the eight counters such that there is a one-to-one
correspondence between the key and the initial state variables, xj,0, and the
initial counters, cj,0.

The key, K [127..0], is divided into eight subkeys: k0 = K [15..0], k1 =
K [31..16], ... , k7 = K [127..112]. The state and counter variables are initialized
from the subkeys as follows:

xj,0 =

{

k(j+1 mod 8) � kj for j even

k(j+5 mod 8) � k(j+4 mod 8) for j odd
(1)

and

cj,0 =

{

k(j+4 mod 8) � k(j+5 mod 8) for j even

kj � k(j+1 mod 8) for j odd.
(2)

The system is iterated four times, according to the next-state function de-
fined in section 2.4, to diminish correlations between bits in the key and bits
in the internal state variables. Finally, the counter variables are re-initialized
according to:

cj,4 = cj,4 ⊕ x(j+4 mod 8),4 (3)

for all j, to prevent recovery of the key by inversion of the counter system.

2.3 IV Setup Scheme

Let the internal state after the key setup scheme be denoted the master state,
and let a copy of this master state be modified according to the IV scheme.
The IV setup scheme works by modifying the counter state as function of
the IV. This is done by XORing the 64-bit IV on all the 256 bits of the
counter state. The 64 bits of the IV are denoted IV [63..0]. The counters are
modified as:

c0,4 = c0,4 ⊕ IV [31..0] c1,4 = c1,4 ⊕ (IV [63..48] � IV [31..16])

c2,4 = c2,4 ⊕ IV [63..32] c3,4 = c3,4 ⊕ (IV [47..32] � IV [15..0])

c4,4 = c4,4 ⊕ IV [31..0] c5,4 = c5,4 ⊕ (IV [63..48] � IV [31..16]) (4)

c6,4 = c6,4 ⊕ IV [63..32] c7,4 = c7,4 ⊕ (IV [47..32] � IV [15..0]).

The system is then iterated four times to make all state bits non-linearly de-
pendent on all IV bits. The modification of the counter by the IV guarantees
that all 264 different IVs will lead to unique keystreams.

3

2.4 Next-state Function

The core of the Rabbit algorithm is the iteration of the system defined by
the following equations:

x0,i+1 = g0,i + (g7,i ≪ 16) + (g6,i ≪ 16)

x1,i+1 = g1,i + (g0,i ≪ 8) + g7,i

x2,i+1 = g2,i + (g1,i ≪ 16) + (g0,i ≪ 16)

x3,i+1 = g3,i + (g2,i ≪ 8) + g1,i

x4,i+1 = g4,i + (g3,i ≪ 16) + (g2,i ≪ 16) (5)

x5,i+1 = g5,i + (g4,i ≪ 8) + g3,i

x6,i+1 = g6,i + (g5,i ≪ 16) + (g4,i ≪ 16)

x7,i+1 = g7,i + (g6,i ≪ 8) + g5,i

gj,i =
(

(xj,i + cj,i+1)
2 ⊕ ((xj,i + cj,i+1)

2 � 32)
)

mod 232 (6)

where all additions are modulo 232. This coupled system is illustrated in
Fig. 1. Before an iteration the counters are incremented as described below.

x0,i x1,i

x7,i

x6,i

x5,i

x2,i

x3,i

x4,i

c1,ic0,i

c2,i

c3,i

c4,i

c7,i

c6,i

c5,i

<<<16

<<<8<<<

<<<8<<<

<<<8<<<

<<<8<<<

<<<16

<<<16

<<<16

<<<16

<<<16 <<<16

<<<16

Figure 1: Graphical illustration of the system.

4

2.5 Counter System

The dynamics of the counters is defined as follows:

c0,i+1 = c0,i + a0 + φ7,i mod 232

c1,i+1 = c1,i + a1 + φ0,i+1 mod 232

c2,i+1 = c2,i + a2 + φ1,i+1 mod 232

c3,i+1 = c3,i + a3 + φ2,i+1 mod 232

c4,i+1 = c4,i + a4 + φ3,i+1 mod 232 (7)

c5,i+1 = c5,i + a5 + φ4,i+1 mod 232

c6,i+1 = c6,i + a6 + φ5,i+1 mod 232

c7,i+1 = c7,i + a7 + φ6,i+1 mod 232

where the counter carry bit, φj,i+1, is given by

φj,i+1 =

1 if c0,i + a0 + φ7,i ≥ 232 ∧ j = 0

1 if cj,i + aj + φj−1,i+1 ≥ 232 ∧ j > 0

0 otherwise.

(8)

Furthermore, the aj constants are defined as:

a0 = 0x4D34D34D a1 = 0xD34D34D3

a2 = 0x34D34D34 a3 = 0x4D34D34D

a4 = 0xD34D34D3 a5 = 0x34D34D34 (9)

a6 = 0x4D34D34D a7 = 0xD34D34D3.

2.6 Extraction Scheme

After each iteration the output is extracted as follows:

s
[15..0]
i = x

[15..0]
0,i ⊕ x

[31..16]
5,i s

[31..16]
i = x

[31..16]
0,i ⊕ x

[15..0]
3,i

s
[47..32]
i = x

[15..0]
2,i ⊕ x

[31..16]
7,i s

[63..48]
i = x

[31..16]
2,i ⊕ x

[15..0]
5,i

s
[79..64]
i = x

[15..0]
4,i ⊕ x

[31..16]
1,i s

[95..80]
i = x

[31..16]
4,i ⊕ x

[15..0]
7,i (10)

s
[111..96]
i = x

[15..0]
6,i ⊕ x

[31..16]
3,i s

[127..112]
i = x

[31..16]
6,i ⊕ x

[15..0]
1,i

where si is the 128-bit keystream block at iteration i.

5

2.7 Encryption/decryption Scheme

The extracted bits are XOR’ed with the plaintext/ciphertext to encrypt/decrypt.

ci = pi ⊕ si, (11)

pi = ci ⊕ si, (12)

where ci and pi denote the ith 128-bit ciphertext and plaintext blocks, re-
spectively.

3 Hidden Weaknesses

We, the designers of Rabbit, hereby state that no hidden weaknesses have
been inserted by us in the Rabbit algorithm.

4 Security Properties

Extensive security evaluations have been conducted on the Rabbit design.
A full description of the results is presented in [6, 17] and in a series of white
papers, available from www.cryptico.com. The following security properties
are claimed:

• The cipher provides 128-bit security, i.e. a successful attack has to be
more efficient than 2128 Rabbit trial encryptions.

• If IV is used, security for up to 264 different IVs is provided, i.e. by
requesting 264 different IVs, the attacker does not gain an advantage
over using the same IV.

• For a successful attack, the attacker has up to 264 matching pairs of
plaintext and ciphertext blocks available.

The following gives a short survey of the results from security evaluations,
for the full details, please refer to the white papers.

4.1 Key Setup Properties

Design Rationale: The key setup can be divided into three stages: Key
expansion, system iteration, and counter modification.

6

• The key expansion stage guarantees a one-to-one correspondence be-
tween the key, the state and the counter, which prevents key redun-
dancy. It also distributes the key bits in an optimal way to prepare
for the the system iteration.

• The system iteration makes sure that after one iteration of the next-
state function, each key bit has affected all eight state variables. It
also ensures that after two iterations of the next-state function, all
state bits are affected by all key bits with a measured probability of
0.5. A safety margin is provided by iterating the system four times.

• Even if the counters are presumed known to the attacker, the counter

modification makes it hard to recover the key by inverting the counter
system, as this would require additional knowledge of the state vari-
ables. It also destroys the one-to-one correspondence between key and
counter, however, this should not cause a problem in practice (see
below).

Attacks on the Key Setup Function: After the key setup, both the
counter bits and the state bits depend strongly and highly non-linearly on
the key bits. This makes attacks based on guessing parts of the key difficult.
Furthermore, even if the counter bits were known after the counter modifi-
cation, it is still hard to recover the key. Of course, knowing the counters
would make other types of attacks easier.

As the non-linear map in Rabbit is many-to-one, different keys could
potentially result in the same keystream. This concern can basically be
reduced to the question whether different keys result in the same counter
values, since different counter values will almost certainly lead to different
keystreams1. Note that key expansion and system iteration were designed
such that each key leads to unique counter values. However, the counter
modification might result in equal counter values for two different keys.
Assuming that after the four initial iterations, the inner state is essentially
random and not correlated with the counter system, the probability for
counter collisions is given by the birthday paradox, i.e. for all 2128 keys, one
collision is expected in the 256-bit counter state. Thus, counter collisions
should not cause a problem in practice.

1The reason is that when the periodic part of the functional graph has been reached,
the next-state function, including the counter system, is one-to-one on the set of points in
the period.

7

Another possibility for related key attacks is to exploit the symmetries
of the next-state and key setup functions. For instance, consider two keys,
K and K̃ related by K [i] = K̃ [i+32] for all i. This leads to the relation,
xj,0 = x̃j+2,0 and cj,0 = c̃j+2,0. If the aj constants were related in the same
way, the next-state function would preserve this property. In the same way
this symmetry could lead to a set of bad keys, i.e. if K [i] = K [i+32] for all i,
then xj,0 = xj+2,0 and cj,0 = cj+2,0. However, the next-state function does
not preserve this property due to the counter system as aj 6= aj+2.

4.2 IV Setup Properties

Design Rationale: The security goal of the IV scheme of Rabbit is to
justify an IV length of 64 bits for encrypting up to 264 plaintexts with the
same 128-bit key, i.e. by requesting up to 264 IV setups, no distinguishing
from random should be possible. There are two stages: IV addition and
system iteration.

• The IV addition modifies the counter values in such a way that it can
be guaranteed that under an identical key, all 264 possible different IVs
will lead to unique keystreams. Note that each IV bit will affect the
input of four different g-functions in the first iteration, which is the
maximal possible influence for a 64-bit IV. The expansion of the bits
also takes the specific rotation scheme of the g-functions into account,
preparing for the system iteration.

• The system iteration guarantees that after just one iteration, each IV
bit has affected all eight state variables. The system is iterated four
times in total in order to make all state bits non-linearly dependent
on all IV bits.

A full security analysis of the IV setup is given in [4]. It concludes that
the good diffusion and non-linearity properties (see below) of the Rabbit
next-state function seem to prevent all known attacks against the IV setup
scheme.

4.3 Period Length

A central property of counter assisted stream ciphers [18] is that strict lower
bounds on the period lengths can be provided. The counter system adopted
in Rabbit has a period length of 2256 − 1 [6]. Since it can be shown that
the input to the g-functions has at least the same period, a very pessimistic

8

lower bound of 2215 can be guaranteed on the period of the state variables
[17].

4.4 Partial Guessing

Guess-and-Verify Attack: Such attacks become possible if output bits
can be predicted from a small set of inner state bits. The attacker will guess
the relevant part of the state, predict the output bits and compare them
with actually observed output bits, thus verifying whether his guess was
correct.

In [6], it was shown that the attacker must guess at least 2 · 12 input
bytes for the different g-functions in order to verify against one byte. This
is equivalent to guessing 192 bits and is thus harder than exhaustive key
search. It was also shown that even if the attacker verifies against less than
one byte of output, the work required is still above exhaustive key search.
Finally, when replacing all additions by XORs, all byte-wise combinations
of the extracted output still depend on at least four different g-functions
(see section 4.6). To conclude, it seems to be impossible to verify a guess of
fewer than 128 bits against the output.

Guess-and-Determine Attack: The strategy for this attack is to guess
a few of the unknown variables of the cipher and from those deduce the
remaining unknowns. The system is then iterated a few times, producing
output that can be compared with the actual cipher output, verifying the
guess.

In the following, we sketch an attack based on guessing bytes, with the
counters being considered as static for simplicity. The attacker tries to
reconstruct 512 bit of inner state, i.e. he observes 4 consecutive 128-bit
outputs of the cipher and proceeds as follows:

• Divide the 32-bit counter and state variables into 8-bit variables.

• Construct an equation system that models state transition and output.
For each of the 4 outputs, he obtains 8 · 2 = 16 equations. For each
of the 3 state transitions, he obtains 8 · 4 = 32 equations. Thus, he
has an overall of 160 equations and 160 variables (4 · 32 state and 32
counter variables).

• Solve this equation system by guessing as few variables as possible.

The efficiency of such a strategy depends on the amount of variables that
must be guessed before the determining process can begin. This amount is

9

lower bounded by the 8-bit subsystem with the smallest number of input
variables. Neglecting the counters, the results of [6] illustrate that each byte
of the next-state function depends on 12 input bytes. When the counters
are included, each output byte of a subsystem depends on 24 input bytes.
Consequently, the attacker must guess more than 128 bits before the deter-
mining process can begin, thus making the attack infeasible. Dividing the
system into smaller blocks than bytes results in the same conclusion.

4.5 Algebraic Attacks

Known Algebraic Attacks: The algebraic attacks on stream ciphers
discussed in the literature [1, 8, 9, 7, 10] target ciphers whose internal state
is mainly updated in a linear way, with only a few memory bits having
a non-linear update function. This, however, is not the case for Rabbit,
where 256 inner state bits are updated in a strongly non-linear fashion. In
the following, we will discuss in some detail the non-linearity properties of
Rabbit, demonstrating why the known algebraic attacks are not applicable
against the cipher.

The Algebraic Normal Form (ANF) of the g-function: A conve-
nient way of representing Boolean functions is through its algebraic normal
form (see, e.g., [16]). Given a Boolean function f : {0, 1}n → {0, 1}, the
ANF is the representation of f as a multivariate polynomial (i.e., a sum of
monomials in the input variables). Both a large number of monomials in
the ANF and a good distribution of their degrees are important properties
of non-linear building blocks in ciphers.

For a random Boolean function in 32 variables, the average total number
of monomials is 231, and the average number of monomials including a given
variable is 230. If we consider 32 such random functions, then the average
number of monomials that are not present in any of the 32 functions is 1
and the corresponding variance is also 1. For more details, see [2].

For the g-function of Rabbit, the ANFs for the 32 Boolean subfunctions
have an algebraic degree of at least 30. The number of monomials in the
functions range from 224.5 to 230.9, where for a random function it should
be 231. The distribution of monomials as function of degree is presented in
Fig. 2. Ideally the bulk of the distribution should be within the dashed lines
that illustrate the variance for ideal random functions. Some of the Boolean
functions deviate significantly from the random case, however, they all have
a large number of monomials of high degree.

10

0 5 10 15 20 25 30
−5

0

5

10

15

20

25

30

Degree

lo
g 2(#

 m
on

om
ia

ls
)

Figure 2: The number of monomials of each degree in each of the 32 Boolean
functions of the g-function. The thick solid line and the two dashed lines
denote the average and variance for an ideal random function.

Furthermore, the overlap between the 32 Boolean functions that consti-
tute the g-function was investigated. The total number of monomials that
only occur once in the g-function is 226.03, whereas the number of monomials
that do not occur at all is 226.2. This should be compared to the random
result which has a mean value of 1 and a variance of 1.

To conclude, the results for the g-function were easily distinguishable
from random. However, the properties of the ANFs for the output bits of
the g-function are highly complex, i.e. containig more than 224 monomials
per output bit, and with an algebraic degree of at least 30. Furthermore, no
obvious exploitable structure seems present.

The Algebraic Normal Form (ANF) of the full cipher: It is clearly
not feasible to calculate the full ANF of the output bits for the complete
cipher. But reducing the word size from 32 bits to 8 bits makes it possible
to study the 32 output Boolean functions as function of the 32-bit key.

For this scaled-down version of Rabbit, the setup function for different
numbers of iterations was investigated. In the setup of Rabbit, four itera-
tions of next-state are applied, plus one extra before extraction. We have
determined the ANFs after 0+1, 1+1, 2+1, 3+1 and 4+1 iterations, where
the +1 denotes the iteration in the extraction.

The results were much closer to random than in the case of the g-
function. For 0+1 iterations, we found that the number of monomials is

11

very close to 231 as expected for a random function. Already after two iter-
ations the result seems to stabilize, i.e. the amount of fluctuations around
231 does not change when increasing the number of iterations. We also made
an investigation of the number of missing monomials for all 32 output bits.
It turned out that for the 0+1, 1+1, 2+1, 3+1 and 4+1 iterations, the
numbers were 0, 1, 2, 3 and 1, respectively. This seems in accordance with
the mean value of 1 and variance of 1 for a random function. So after a
few iterations, basically all possible monomials are present in the full cipher
output functions.

Concluding, for the down-scaled version of the full cipher, no non-random
properties were identified. For full details of the analysis, including statisti-
cal data, the reader may refer to [2].

Overdefined Equation Systems in the State: For simplicity, we ignore
the counters and consider only the 256 inner state bits. Furthermore, we
replace all arithmetical additions by XOR and omit the rotations. The use
of XOR is a severe simplification as this will guarantee that the algebraic
degree of the complete cipher will never exceed 32 for one iteration (but, of
course, grow for more iterations).

With the inner state consisting of 256 bit, we need the output of at
least two (ideally consecutive) iterations, giving us a non-linear system of
256 equations in 256 variables. Note that in the modified Rabbit design,
everything is linear with the exception of the g-functions. Thus, we can
calculate the number of monomials when expressing the output as a function
of the state bits as follows:

• The output of the first iteration can be modelled as a linear function
in the inner state. Thus, we obtain 128 very simple linear equations,
containing all 256 monomials of degree 1.

• In order to generate the output of the next iteration, however, the inner
state bits are run through the g-functions. Remember that 232−226.2 ≈
231.97 monomials (are contained in the output of each g-functions.
Thus, the second set of equations contains approximately 8 · 231.97 =
234.97 monomials.

In particular, this means that the non-linear system of equations is neither
sparse, nor is it of low degree. Linearizing it increases the number of variables
to about 235, and in order to solve it, an extra 235−28 equations are required.
These can not be obtained by using further iterations, because this way,
the number of monomials increases beyond 2128. Analysis conducted in

12

[2] indicates that they can not be obtained by using implicit equations,
either. If, however, it would be possible to find such equations, the non-
linear additions and the counter system would most likely destroy their
benefit. Thus, we do not expect a algebraic attack using the inner state bits
as variables to be feasible.

Overdefined Equation Systems in the Key: An algebraic attack tar-
geting the key bits is even more difficult, since there are at least five rounds
iterations of the non-linear layer before the first output bits can be observed
(nine rounds if IV is used). Thus, the ANF of the full cipher has to be
considered. Remembering that for the 8-bit version of the cipher, the ANF
of the cipher is equivalent to a random function after just two iterations,
it becomes obvious that the number of monomials in the equation system
would be close to the maximum of 2128. Solving such a system of equations
would be well beyond a brute force search over the key space.

4.6 Correlation Attacks

Linear Approximations: In [6], at thorough investigation of linear ap-
proximations by use of the Walsh-Hadamard Transform [16, 11] was made.
The best linear approximation between bits in the input to the next-state
function and the extracted output found in this investigation had a correla-
tion coefficient of 2−57.8.

In a distinguishing attack, the attacker tries to distinguish a sequence
generated by the cipher from a sequence of truly random numbers. A distin-
guishing attack using less than 264 blocks of output cannot be applied using
only the best linear approximation because the corresponding correlation
coefficient is 2−57.8. This implies that in order to observe this particular
correlation, output from 2114 iterations must be generated [13].

The independent counters have very simple and almost linear dynamics.
Therefore, large correlations to the counter bits may cause a possibility for a
correlation attack (see e.g. [14]) for recovering the counters. It is not feasible
to exploit only the best linear approximation in order to recover a counter
value. However, more correlations to the counters could be exploited. As
this requires that there exist many such large and useable correlations, we
do not believe such an attack to be feasible2.

2Knowing the values of the counters may significantly improve both the Guess-and-
Determine attack, the Guess-and-Verify attack as well as a Distinguishing attack even
though obtaining the key from the counter values is prevented by the counter modification
in the setup function.

13

Second Order Approximations: However, it was found that truncating
the ANFs of the g-functions after second order terms proposes relatively
good approximations under the right circumstances.

We denote by f [j] the functions that contain the terms of first and second
order of the ANF of g[j]. Measurements of the correlation between f [j] and
g[j] revealed correlation coefficients of less than 2−9.5, which is relatively
poor compared to the corresponding linear approximations. However, the
XOR sum of two neighbor bits, i.e. g[j] ⊕ g[j+1] was found to be correlated
with f [j] ⊕ f [j+1] with correlation coefficients as large as 2−2.72. This could
indicate that some terms of higher degree vanish when two neighbor bits are
XOR’ed.

These results can be applied to construct second order approximations of
the cipher. The best one is correlated to the real function with a correlation
coefficient of 2−26.4, and a number of approximations with correlation coeffi-
cients of similar size. Preliminary investigations were made with other XOR
sums. In general, sums of two bits can be approximated significantly better
than single bits. The sum of neighboring bits does, however, seem to be the
best approximation. Preliminary investigations show that approximations
of sums of more than two bits have relatively small correlation coefficients.

It is not trivial to use second-order relations in linear cryptanalysis, and
even the improved correlation values are not high enough for an attack as we
know it. In an attack it would be necessary to include the counter, and set
up relations between two consecutive outputs. We expect this to seriously
complicate such an attack and make it infeasible.

4.7 Differential Analysis

Difference scheme: Given two inputs x′ and x′′, and their corresponding
outputs y′ and y′′ (all in {0, 1}n), the following difference schemes were used:

• The subtraction modulus input and output differences are defined by
∆x = x′ − x′′ mod 2n and ∆y = y′ − y′′ mod 2n, respectively.

• The XOR difference scheme is defined by ∆x = x′ ⊕ x′′ and ∆y =
y′ ⊕ y′′.

Other differences are in principle possible, however, none of them were found
to be better than the above ones.

Differentials of the g-function: Differentials of the g-function are in-
vestigated in [3]. While in principle, it would be necessary to calculate the

14

probabilities of all 264 possible differentials (which is not feasible given stan-
dard equipment), valuable insights can be gained by considering smaller
versions of the g-functions. This way, 8-, 10-, 12-, 14-, 16- and 18-bit g-
functions were considered.

For the XOR difference operator, the investigation of reduced g-functions
revealed a simple structure of the most likely differential that persisted for
all sizes. The input differences were characterized by a block of ones of size
of approximately 3

4 of the word length3. Making the reasonable assumption
that these properties will be maintained in the 32-bit g-function, all input
differences constituted by single blocks of ones were considered. The largest
probability, and most likely the largest of all, found in this investigation was
2−11.57 for the differential (0x007FFFFE, 0xFF001FFF).

For the subtraction modulus difference, no such clear structure was ob-
served, so the differentials with the largest probabilities could not be deter-
mined for the 32-bit g-function. However, the probabilities scale nicely with
word length. Assuming that this scaling continues to 32-bit, the differen-
tial with the largest probability is expected to be of the order 2−17. The
probabilities are significantly lower compared those available for the XOR
difference operator.

Higher order differentials were also briefly investigated, but due to the
huge complexity, only g-functions with very small word length could be ex-
amined. This revealed that in order to obtain a differential with probability
1, the differential has to be of order equal to the word length, meaning that
the non-linear order of the g-function is maximal, for the small word length
g-functions examined.

Differentials of the full cipher: The differentials of the full cipher were
extensively investigated in [2]. It was shown that any characteristic will
involve at least 8 g-functions4.

From analyzing the transition matrices for smaller word length g-functions
it was found that after about four iterations of those, there resulted a steady
state distribution of matrix elements close to uniform for both the XOR and
subtraction modulus difference schemes. Using this and that the probability
for the best characteristic, Pmax, satisfies Pmax < 2−11.57·8 � 2−64, we do
not expect any exploitable differential.

For a very simplified version of Rabbit, without rotations and with the
XOR operation in the g-function replaced by an addition mod 232, higher

3Other structural properties are also present, they are described in [2] in more detail.
4probably it can be shown that 16 g-functions are the true minimum.

15

order differentials can be used to break the IV setup scheme even for a rela-
tively large number of iterations. If we consider another simplified version,
with rotations, third order differential still has a high probability for one
round. However, for more iterations, the security increases very quickly. Fi-
nally, using the XOR in the g-function completely destroys the applicability
of higher order differentials based on modular subtraction and XOR.

4.8 Statistical Tests

The statistical tests on Rabbit were performed using the NIST Test Suite
[15], the DIEHARD battery of tests [12] and the ENT test [20]. Tests
were performed on the internal state as well as on the extracted output.
Furthermore, we also conducted various statistical tests on the key setup
function. Finally, we performed the same tests on a version of Rabbit where
each state variable and counter variable was reduced to 8 bit. No weaknesses
were found in any of these cases.

5 Strengths and Advantages

The design of Rabbit is a stream cipher with a new type of design. It provides
a strong non-linear mixing of the inner state between two iterations. As
opposed to almost all other designs currently available, it uses neither linear
feedback shift registers nor S-boxes. These design decision have a number
of important consequences.

5.1 Compact design

The design of Rabbit is very compact. All arithmetical operations used in
the cipher are provided by modern processors, thus leading to very high
speeds on a variety of platforms. As opposed to many stream cipher pro-
posals, this speed advantage also holds for the key and IV setup.

If implemented in hardware, the gate count is low. Due to the lack of S-
boxes and operations in GF(2n), no lookup tables are required, keeping the
memory requirements for both hardware and software base implementations
very low (basically, only a copy of the inner state has to be stored). Also note
that on most modern processors, the full inner state fits into the registers,
eliminating (computationally expensive) memory access.

16

5.2 Security

The design of Rabbit makes the most wide-spread attacks against stream
ciphers inapplicable. Both algebraic attacks ([10] and subsequent work) and
correlation attacks ([19] and subsequent work) against stream ciphers are
targeting designs with internal linear structures, which are not prevalent in
Rabbit. Also the Time-Memory-Data tradeoffs ([5] and subsequent work)
are not applicable due to the large internal state of 513 bits.

Nonetheless, Rabbit has been evaluated against all known attack tech-
niques both from stream and block cipher cryptanalysis, and it has been
carefully optimized in order to avoid any weaknesses towards them. We are
thus optimistic that any attack against Rabbit would have to be based on
a completely new attack technique.

6 Design Rationale

Rabbit was specifically designed to be very efficient in software implementa-
tions without sacrificing any security. It is meant to provide 128-bit security
for up to 264 blocks of plaintext. In the following, the decisions involved in
designing the cipher are briefly sketched.

6.1 Key and IV setup

The design rationales for the key and IV setup functions were described in
sections 4.1 and 4.2.

6.2 The g-function

Following initial ideas from chaos theory, the g-function was to be built on
the basis of the arithmetical squaring function sqr : {0, 1}32 → {0, 1}64.
The question was how to reduce the 64-bit output of sqr to 32 bit. Not
surprisingly, analysis showed that the correlation between input and output
bits was particularly high for high and low order bits, while better results
were obtained for the middle bits. The corresponding graph is roughly v-
shaped.

One idea would have been to use only the 32 middle bits. However,
combining the upper half of the output with the lower half using xor as
done in Rabbit provides much better results; correlation coefficients are
much lower for all output bits.

17

6.3 The counter system

Note that the inner state bits of Rabbit are updated in a highly non-linear
fashion. Such systems are known to have unpredictable period lengths.
Thus, it was decided to overcome this problem using counters, inspired by
[18].

As opposed to the proposal in [18], the counters were added to the inner
state bits before running them through the g-function. This was done in
order to “hide” the counter values, i.e. to make sure that they can not
easily be reconstructed from the output. On the other hand, this made the
proof of the period length harder [17].

Note that a standard counter construction (using arithmetical addition
of a constant to increase the counter value) would lead to very predictable
behaviour for some bits. As an example, for all odd constants, the least
significant bit would flip with every iteration. Thus, the carry feedback
construction was introduced, making sure that all bit positions are equally
strong.

A weak choice of the counter constant A would also result in a security
problem. If the number contains too many consecutive zeroes or ones, the
flip behaviour of certain bits could be predicted. Thus, the constant A was
chosen to be the binary sequence 110100 repeated. This value makes sure
that all counter bits have unique flip probabilities. Also note that all rotated
versions of that constant are pairwise prime with 2256 − 1.

6.4 Symmetry and Mixing

The system was designed to be as symmetric as possible in order to facilitate
analysis. However, in order to prevent the attacker to decompose the sys-
tem into subsystems, next-state function, rotations, counter modification
in setup, and extraction were constructed in such a way that a thorough
mixing of states is achieved.

In particular, all possible rotations were tested in order to identify the
ones that would provide a maximal mixing of internal state bits and thus
avoid system decomposition. Amongst the most secure rotations, the most
efficient ones were chose for Rabbit.

18

7 Computational Efficiency

7.1 Software Performance

Encryption speeds for the specific processors were obtained by encrypting 8
kilobytes of data stored in RAM and measuring the number of clock cycles
passed. For convenience, all 513 bits of the internal state are stored in an
instance structure, occupying a total of 68 bytes. The presented memory
requirements show the amount of memory allocated on the stack related
to the calling convention (function arguments, return address and saved
registers) and for temporary data. Memory for storing the key, instance,
ciphertext and plaintext has not been included. All performance results,
code size and memory requirements are listed in Table 1 below.

Intel Pentium Architecture: The performance was measured on a 1.0
GHz Pentium III processor and on a 1.7 GHz Pentium 4 processor. The
speed-optimized version of Rabbit was programmed in assembly language
(using MMX instructions) inlined in C and compiled using the Intel C++ 7.1
compiler. A memory-optimized version can eliminate the need for memory,
since the entire instance structure and temporary data can fit into the CPU
registers.

ARM7 Architecture: A speed optimized ARM implementation was com-
piled and tested using ARM Developer Suite version 1.2 for ARM7TDMI.
Performance was measured using the integrated ARMulator.

MIPS 4Kc Architecture: An assembly language version of Rabbit has
been written for the MIPS 4Kc processor5. Development was done using
The Embedded Linux Development Kit (ELDK), which includes GNU cross-
development tools. Performance was measured on a 150 MHz processor
running a Linux operating system.

8-bit Processors: The simplicity and small size of Rabbit makes it suit-
able for implementations on processors with limited resources such as 8-bit
microcontrollers. Multiplying 32-bit integers is rather resource demanding
using plain 32-bit arithmetics. However, squaring involves only ten 8-bit
multiplications which reduces the workload by approximately a factor of

5The MIPS 4Kc processor has a reduced instruction set compared to other MIPS 4K
series processors, which decreases performance.

19

Processor Performance Code size Memory

Pentium III 3.7/278/253 440/617/720 40/36/44
Pentium 4 5.1/486/648 698/516/762 16/36/28
ARM7 9.6/610/624 368/436/408 48/80/80
MIPS 4Kc 10.9/749/749 892/856/816 40/32/32

Table 1: Performance (in clock cycles or clock cycles per byte), code size
and memory requirements (in bytes) for encryption / key setup / IV setup.

two. Finally, the rotations in the algorithm have been chosen to correspond
to simple byte-swapping.

7.2 Hardware Estimates

ASIC Performance: The toughest operation from a hardware point of
view is the 32-bit squaring. If no separate squaring unit is available, the
nature of squaring allows for some simplification over an ordinary 32 ×
32 multiplication. It can be implemented as three 16 × 16 multiplications
followed by addition. Being the most complex part of the algorithm, it
determines the overall speed and contributes significantly to the gate count.

The 8 internal state and counter words can be computed using between
1 and 8 parallel pipelines. Estimates for different versions are given in table
2, giving gate count, die area and performance on a .18 micron technology.
If greater speed is needed and if the gate count is of less importance, more
advanced multiplication methods can be used. The gate count and die area
numbers include key setup and IV setup.

Pipelines Gate count Die area Performance

1 28K 0.32 mm2 3.7 GBit/s
2 35K 0.40 mm2 6.2 GBit/s
4 57K 0.66 mm2 9.3 GBit/s
8 100K 1.16 mm2 12.4 GBit/s

Table 2: Hardware estimates for Rabbit on .18 micron technology.

The performance numbers for 4 parallel pipelines can be doubled if two
instances of Rabbit are executed in an interleaving manner (will require
approx. 10K gates extra). Performance for 8 pipelines can be tripled in the
same way if three instances are executed (approx. 20K gates extra).

20

FPGA Performance: When implementing Rabbit in an FPGA, the chal-
lenges will be similar to those in an ASIC implementation. Again the squar-
ing operation will be the most complex element. Several FPGA families
have dedicated multiplication units available. An example of this would be
the Xilinx Spartan 3 or Altera Cyclone II families. In these architectures
the latencies of the multiplier units are given to be 2.4 and 4.0 ns respec-
tively. Based on a 2-pipeline design similar to that discussed in the ASIC
section this will give us decryption performance of 8.9 Gbit/s and 5.3 Gbit/s
respectively if the multiplication is the bottleneck. These implementations
will fit on any of the Altera Cyclone II family members and from Xilinx
XC3S200 and upwards.

Depending on the number of multipliers available in the chosen FPGA,
greater parallelism can be exploited for better performance by increasing
the number of pipelines. With 24 multipliers available, throughputs of 17.8
Gbit/s and 10.7 Gbit/s will be achievable. This number of multipliers is
present, e.g., in chips from Altera EP2C20 and Xilinx XC3S1000 upwards.

8 Advice for Implementers

Note that all of Rabbits elementary operations are readily available on a
standard processor. Thus, the reference implementation is very similar to
the specification and shows how to obtain an elegant basic implementation
of Rabbit. Since no S-boxes or computations over GF(2n) are required, table
lookups for increased performance are not required to implement the cipher.
In order to obtain fast implementations, it is recommended to implement
at least the g-function in assembly language and inline it into the code.
Assembly code can also help improve the performance by making use of the
carry flag (in order to implement the counter system).

References

[1] F. Armknecht and M. Krause. Algebraic attacks on combiners with
memory. In D. Boneh, editor, Proc. Crypto 2003, volume 2729 of LNCS,
pages 162–175. Springer, 2003.

[2] Cryptico A/S. Algebraic analysis of Rabbit. http://www.cryptico.com,
2003. white paper.

[3] Cryptico A/S. Differential properties of the g-function.
http://www.cryptico.com, 2003. white paper.

21

[4] Cryptico A/S. Security analysis of the IV-setup for Rabbit.
http://www.cryptico.com, 2003. white paper.

[5] S. Babbage. A space/time tradeoff in exhaustive search attacks on
stream ciphers. In European Convention on Security and Detection,
volume 408 of IEE Conference Publication, May 1995.

[6] M. Boesgaard, M. Vesterager, T. Pedersen, J. Christiansen, and
O. Scavenius. Rabbit: A new high-performance stream cipher. In T. Jo-
hansson, editor, Proc. Fast Software Encryption 2003, volume 2887 of
LNCS, pages 307–329. Springer, 2003.

[7] N. Courtois. Fast algebraic attacks on stream ciphers with linear feed-
back. In D. Boneh, editor, Proc. Crypto 2003, volume 2729 of LNCS,
pages 176–194. Springer, 2003.

[8] N. Courtois. Higher order correlation attacks, XL algorithm and cryp-
toanalysis of toyocrypt. In P.J. Lee and C.H. Lim, editors, Proc. In-

formation Security and Cryptology 2002, volume 2587 of LNCS, pages
182–199. Springer, 2003.

[9] N. Courtois and W. Meier. Algebraic attacks on stream ciphers with
linear feedback. In E. Biham, editor, Proc. of Eurocrypt 2003, volume
2656 of LNCS, pages 345–359. Springer, 2003.

[10] N. Courtois and J. Pieprzyk. Cryptanalysis of block ciphers with
overdefined systems of equations. In Y. Zheng, editor, Proc. Asiacrypt

2002, volume 2501 of LNCS, pages 267–287. Springer, 2003.

[11] J. Daemen. Cipher and hash function design strategies based on linear

and differential cryptanalysis. PhD thesis, KU Leuven, March 1995.

[12] G. Masaglia. A battery of tests for random number generators.
http://stat.fsu.edu/˜geo/diehard.html, 1996.

[13] M. Matsui. Linear cryptanalysis method for DES cipher. In T. Helle-
seth, editor, Proc. Eurocrypt ’93, volume 765 of LNCS, pages 386–397.
Springer, 1993.

[14] W. Meier and O. Staffelbach. Fast correlation attacks on stream ciphers.
In C. Günther, editor, Proc. Eurocrypt ’88, volume 330 of LNCS, pages
301–314. Springer, 1988.

22

[15] National Institute of Standards and Technology. A statistical test suite
for the validation of random number generators and pseudo random
number generators for cryptographic applications. NIST Special Pub-
lication 800-22, http://csrc.nist.gov/rng, 2001.

[16] R. Rueppel. Analysis and Design of Stream Ciphers. Springer, 1986.

[17] O. Scavenius, M. Boesgaard, T. Pedersen, J. Christiansen, and V. Ri-
jmen. Periodic properties of counter assisted stream cipher. In
T. Okamoto, editor, Proc. CT-RSA 2004, volume 2964 of LNCS, pages
39–53. Springer, 2004.

[18] A. Shamir and B. Tsaban. Guaranteeing the diversity of number gen-
erators. Information and Computation, 171(2):350–363, 2001.

[19] T. Siegenthaler. Decrypting a class of stream ciphers using ciphertext
only. IEEE Transactions on Information Theory, C-34(1):81–85, Jan-
uary 1985.

[20] J. Walker. A pseudorandom number sequence test program.
http://www.fourmilab.ch/random, 1998.

23

