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Abstract
TRIVIUM is the simplest ECRYPT Stream Cipher project 
Candidate which deals with key and IV of length 80. 
Using the sequential Circuit Approximation method, 
introduced by Golic in 94, we derive a linear function of 
consecutive keystream bits which is hold with correlation 
coefficient of about 2-72. This shows that TRIVIUM is 
strong against linear sequential circuit approximation 
attack in spite of the extra simplicity of its output function 
and next-state function. It seems very hard to find a biased 
linear function of consecutive output bits which leads to a 
successful distinguishing attack on TRIVIUM.

1. Introduction

Golic has shown that for a binary keystream generator with M bits of memory whose 
initial state is chosen uniformly at random, there exists a linear function of at most M+1 
consecutive output bits which is an unbalanced function of the initial state variables [5 or 
6]. He also developed an effective method for the linear model determination based on 
linear sequential circuit approximation of autonomous finite-state machines. The linear 
function of consecutive output bits produces an unbalanced sequence to which one can 
apply the standard chi-square frequency statistical test. The test is successful if and only 
if the length of the sequence is chosen to be inversely proportional to the square of the 
correlation coefficient1. If the key length is k, the statistical weakness is effective if and 
only if the correlation coefficient is greater than 2-k/2. In this paper, using Golic’s method,
we extract the linear sequential circuit approximation of the TRIVIUM stream cipher [3]- 
the simplest ECRYPT Stream Cipher project Candidate [1]. We derive a linear function 
of consecutive output bits which is hold with correlation coefficient of about 2-72. It 
seems very hard to find a linear function of consecutive output bits with correlation 
coefficient greater than 2-40 to have a successful distinguishing attack. A similar result has 
been mentioned in TRIVIUM specification [3] but not explained in details. However, the

1 The correlation coefficient of the random variable x is defined as ε = 1 – 2Pr{x = 1}. 
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TRIVIUM designers derived these results in a slightly different way and we were 
suggested to publish these results [4].
These results show that TRIVIUM is strong against linear sequential circuit approximation 
attack, in spite of the linearity of its output function and all of the components of its next-
state function except three of them which also have very near distances from some linear 
functions.
The most important negative problem with the TRIVIUM is its period which is not well 
understood and even recently some states of period three have been found [2].
The paper is organized as follows. In sections 2 and 3 a brief descriptions of the TRIVIUM
stream cipher and linear sequential circuit approximation are respectively given. We 
derive the linear sequential circuit approximation of the TRIVIUM in section 4 and 
propose the correlation coefficient analysis in section 5. The paper is concluded in section 
6.  

2. A Brief Description of TRIVIUM

TRIVIUM is a very simple hardware oriented synchronous stream cipher proposed as a 
candidate to the ECRYPT Stream Cipher Project [3]. TRIVIUM generates up to 264 bits of 
key stream from an 80-bit secret key and an 80-bit initial value (IV). The proposed design 
contains a 288-bit internal state denoted by (s1,…, s288). The key stream generation 
consists of an iterative process which extracts the values of 15 specific state bits and uses 
them both to update 3 bits of the state and to compute 1 bit of key stream zt. The state bits 
are then rotated and the process repeats itself until the requested N≤264 bits of key stream 
have been generated. A complete description is given by the following simple pseudo-
code:

for t = 1 to N do
t1 ← s66 + s93

t2 ← s162 + s177
t3 ← s243 + s288

zt ← t1 + t2 + t3
t1 ← t1 + s91 . s92 + s171

t2 ← t2 + s175 . s176 + s264

t3 ← t3 + s286 . s287 + s69
(s1, s2,…, s93) ← (t3, s1,…, s92)
(s94, s95, …, s177) ← (t1, s94, …, s176)
(s178, s179, …, s288) ← (t2, s178, …,s287)

end for

3.  A Brief Description of the Linear Sequential Circuit Approximation

Keystream generators for stream cipher applications can generally be realized as 
autonomous finite-state machines whose initial state and possibly structure as well 
depend on a secret key. A binary autonomous finite-state machine is defined by 
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St = F(St-1)  t≥1 (3-1) 

zt = f(St)       t≥1 (3-2) 

where F: GF(2)M → GF(2)M is the next-state vector Boolean function, f: GF(2)M →
GF(2) is the output Boolean function, St = (st,1, st,2, …, st,M)T is the state vector at time t, 
S0 = (s0,1, s0,2, …, s0,M)T is the initial state, and {zt} is the output keystream sequence2.
We just consider the case that the key merely controls the initial state, and therefore, next 
state function and output function are known.
Golic has shown that there exist a linear function of at most M+1 consecutive output bits 
L(zt, zt+1, …, zt+M) which is an unbalanced function of the initial state variables. Its 
probability distribution is independent of time t if the next state function is balanced. This 
statement has been proposed as a Theorem in [5], which has come in the following.

Theorem Let the next-state function of a binary autonomous finite state machine with M 
bits of memory be balanced. Then there exists a linear function L of at most M+1 
consecutive output bits L(zt, zt+1, …, zt+M) which is an unbalanced function of the initial 
state variables for each t≥1. Moreover, the correlation coefficient between L(zt, zt+1, …, 
zt+M) and the constant zero function is the same for each t.
The linear function L of consecutive output bits produces an unbalanced sequence to 
which one can apply the standard chi-square frequency statistical test to make a 
distinguishing attack. The test is successful if and only if the length of the sequence is 
chosen to be inversely proportional to the square of the correlation coefficient. If the key 
length is k, the statistical weakness is effective if and only if the correlation coefficient is 
greater than 2-k/2.
Golic, also, has developed an efficient procedure for finding unbalanced linear functions 
of the output which is based on the linear sequential circuit approximation approach. To
this end, he first decomposes the output Boolean function and each of the Boolean 
functions in the next-state function of the keystream generator into the sum of linear 
functions and an unbalanced Boolean function. Then, by virtue of the obtained linear 
approximations, he puts the basic equations (3-1) and (3-2) into the form.

St = ASt-1 + ∆(St-1)  t≥1 (3-3) 

zt = BSt + ε(St)      t≥1 (3-4) 

where, considering St as an M×1 vector, A is an M×M matrix and B is a 1×M vector, ∆ is 
an M×1 noise vector and ε is a scalar noise component.
By using the generating function technique, Golic then solves the linear recurrence 
equations and thus reaches to his desire, that is, a linear function of at most m+1 
consecutive output bits that is expressed as the sum of unbalanced functions of the initial 
state variables. He shows that the linear function corresponds to the minimal polynomial3

2 T denotes the matrix transposition operation.
3 The minimal polynomial of a given square matrix A, is the minimal degree non-zero polynomial 
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of A, the state transition matrix of the linear sequential circuit. 
The conditions of next state function and output function independence of the secret key, 
and balance of the next state function is well satisfied for the TRIVIUM cipher.

4. Linear Sequential Circuit Approximation of TRIVIUM

In this section, we derive the linear sequential circuit approximation of the TRIVIUM
stream cipher from basis. For ease of reference, here, we have listed all matrixes and 
vectors used in this section as well as their dimensions (m = 282). 
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For the TRIVIUM stream cipher we have M = 288. Since the output function and all the 
components of the next-state function, except three of them, are linear for the TRIVIUM
stream cipher, decomposition of these functions is performed easily. It is sufficient to just 
consider the best linear approximation of the 1st, 94th and 178th component of the next-
state function given in the follows.

s t+1,1 = s t,243 + s t,288 + s t,286 . s t,287 + s t,69 (4-1) 

s t+1,94 = s t,66 + s t,93 + s t,91 . s t,92 + s t,171 (4-2) 

s t+1,178 = st,162 + s t,177 + s t,175 . s t,176 + s t,264 (4-3) 

The best linear approximation of the above functions are achieved by eliminating the 
quadratic terms which is hold with probability equal to ¾. Therefore, the linear 
approximations (3-3) and (3-4) for the TRIVIUM could be written as follows

t1-tt HASS ∆+= t≥1 (4-4) 

tt BSz = t≥1 (4-5) 
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where, H = [hi,j] is a 288×3 matrix whose all entries are zero, except h1,1, h94,2 and h178,3

which are one, T
tttt ]δδδ[∆ ′′′′′′= is the 3×1 noise vector corresponding to the 1st, 94th

and 178th component of the next-state function, and A and B are as follows.4
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2882431771629366 eeeeeeB +++++= (4-7) 

Using the decomposition (4-4), it then follows that St satisfies the following expressions.
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(4-9) 

for t≥1. 
Multiplying both the most right and the most left sides of (4-9) by B and using (4-5), we 
have

4 ei denotes the ith row of the 288×288 identity matrix.
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where
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are 1×3 vectors for m...,1,0,=τ .
Let C′, C″ and C″′ denote the three columns of a (m+1)×3 matrix whose ith row is Ci-1.
Similarly, Let ∆′, ∆″ and ∆″′ denote the three rows of a 3×(m+1) matrix whose jth column
is ∆t+j-1, that is
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Then, (4-10) could be rewritten as

C∆C∆C∆ΦZ tttt ′′′′′′+′′′′+′′= (4-14)
where

]...[Φ m10 ϕϕϕ= (4-15)

and

]z...zz[Z mt1ttt ++= (4-16)

The relation (4-14) is what we were looking for. 
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5. Correlation Coefficient Analysis

In general the sum of unbalanced Boolean functions can be balanced. However, Golic has 
proved that if the functions are picked independently at random, then with high 
probability their sum is unbalanced with the correlation coefficient very close to the 
product of the individual correlation coefficients [4]. Using this fact, it can be inferred 
that the relation (4-14) produces an unbalanced sequence {et} = {ΦZt}. The standard chi-
square frequency statistical test can then be applied to {et} to distinguish this sequence 
from a purely random binary sequence. The distinguishing error probability is less than 
about 10-3, if the segment length is 10/ε2 where ε = 1 – 2Pr{et = 1} is the correlation 
coefficient of {et}.
Every component of t∆′ , t∆ ′′  and t∆ ′′′  vectors is product of two (approximately 
independent random) binary terms, and therefore has correlation coefficient equal to ½.
While the non-adjacent components of these vectors are (approximately) independent, it 
is not true for the adjacent components; because every two adjacent components of these 
vectors have one term in common, see the equations (4-1) to (4-3). 
However, all the runs5 in C′, C″ and C″′ have length one and thus there is no concern 
about the independence of the sum of noise terms in (4-14), see appendix. The total 
number of runs in C′, C″ and C″′ is 126 which shows that the correlation coefficient of 
{et} is ε = 2-126.
Remark If there were some runs in C′, C″ or C″′ with length n ≥ 2, we must have 
grouped the noise functions into suitable categories such that the required independence 
assumption was satisfied. In other words, we must have included the total effect of the 
noise terms corresponding to each run as one independent noise term. The some of n 
adjacent noise terms could be expressed by the Bent function 1nn3221 xxxxxx ++++ L

which has correlation coefficient equal to  1)/2(n2 +− . Therefore, if we denote the total 
number of runs with length n (n ≥ 1) in C′, C″ or C″′ by kn, the correlation coefficient of 
{et} is  ∏

≥

+−=
1n

1)/2(nk n2ε in general.

Since every linear function of a given sequence can be defined as polynomial in the 
generating function domain, it follows that linear equations with correlation coefficients 
greater than 2-126 may be found by using the generating function concept. Let {at} denote 

a given sequence. In generating function domain, the linear function ∑
=
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denoted by U(D)at where ∑
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k
kDuU(D) .

5 A consecutive subsequence of ones in a sequences (or vector) which are followed immediately after and 
before by a zero (if there are such bits) is called a run. For example the vector [1 0 1 1 0 0 111 0 1 0 0 11 0] 
has two runs of length one, two runs of length two and one run of length three.  
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Let corresponding to a given vector ]u...uu[U r10=  define the polynomial

∑
=

=
r

0k

k
kDuU(D) . Using this notation, the relation (4-14) can be expressed in generating 

function domain as follows.

tttt δ(D)Cδ(D)Cδ(D)C(D)z ′′′′′′+′′′′+′′=Φ (4-17) 

The polynomials Φ(D), C′(D), C″(D) and C′″(D) are available in the appendix.
It is easy to show that multiplying both sides of (4-11) in any non-zero polynomial gives 
another unbalanced linear equation. In order to find equations with correlation 
coefficients greater than 2-126, we must multiply both sides of (4-11) by some suitable 
polynomial P(D). We did thorough search over all polynomials P(D) with non-zero 
constant term and degree up to 24. The maximum correlation coefficient, among all those 
polynomials, is achieved by the following two independent choices for P(D) which is 
equal to 2-72.

P1(D) = 1 + D6 (4-18)

P2(D) = (1+D)(1 + D6) (4-19) 

For P1(D), all of the vector representation of the polynomials P1(D)C′(D), P1(D)C″(D)
and P1(D)C′″(D) have exactly just 24 runs of length one, while in case of P2(D) all of 
them have exactly just 24 runs of length two. According to the above remark, both of 
them are corresponding to correlation coefficient equal to 2-72.
Looking into the polynomials C′(D), C″(D) and C′″(D), it is obvious that all of the 
polynomials C′(D), C″(D) and C′″(D) are multiplication of some polynomial in D3 and 
the simple polynomial D (Φ(D) is also a polynomial in D3!!). One may think that linear 
functions with greater correlation coefficients could be found by considering P(D) as a 
polynomial in D3. We also did thorough search over all polynomials P(D) = K(D3) which 
K(D) had non-zero constant term and degree up to 24. In this case, the maximum 
correlation coefficient among all those polynomials is again 2-72 achieved by K(D) = 1 + 
D2 which is in accordance with P1(D) = 1 + D6.
The value 2-72 of the beast correlation coefficient which we found shows that the time 
complexity for distinguishing the output sequence of the TRIVIUM form a truly random 
generator is O(2144). It seems impossible to find a linear function of consecutive output 
bits with correlation coefficient more than 2-40 to have a successful distinguishing attack.

6. Conclusion

In this paper, we extracted the linear sequential circuit approximation of the TRIVIUM
stream cipher. We derive a linear function of consecutive output bits which is hold with 
correlation coefficient of about 2-72. It seems very hard to find a linear function of 
consecutive output bits with correlation coefficient greater than 2-40 to have a successful 
distinguishing attack.  These results show that TRIVIUM is strong against linear sequential 
circuit approximation attack, in spite of the linearity of its output function and all of the 
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components of its next-state function except three of them which also have very near 
distances from some linear functions.
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Appendix

Φ(x) = 1 + x6 + x12 + x15 + x18 + x21 + x24 + x30 + x36 + x45 + x51 + x54

+ x57 + x63 + x69 + x72 + x75 + x78 + x81 + x84 + x90 + x96 + x102 + 
x108 + x114 + x120 + x123 + x126 + x129 + x135 + x201 + x207 + x210 + 
x213 + x216 + x222 + x228 + x234 + x240 + x246 + x252 + x258 + x264 + 
x270 + x276 + x282

C′(x) = x + x7 + x13 + x16 + x19 + x22 + x31 + x37 + x40 + x52 + x61 + 
x73 + x79 + x85 + x88 + x91 + x94 + x97 + x100 + x103 + x106 + x118

+ x124 + x127 + x130 + x133 + x145 + x151 + x154 + x157 + x160 + x163

+ x166 + x169172 + x175 + x178 + x181 + x184 + x187 + x190 + x193 + 
x199 + x205 + x211 + x217

C″(x) = x + x7 + x13 + x16 + x19 + x22 + x40 + x43 + x61 + x64 + x67 + 
x85 + x88 + x91 + x97 + x103 + x118 + x124 + x130 + x133 + x151 + 
x154 + x157 + x160 + x163 + x166 + x169 + x172 + x175 + x178 + x181 + 
x184 + x187 + x190 + x193 + x196 + x199 + x202 + x208 + x214

C′″(x) = x + x16 + x22 + x31 + x34 + x37 + x40 + x52 + x58 + x61 + x64 + 
x67 + x70 + x79 + x88 + x94 + x109 + x112 + x115 + x118 + x121 + x124

+ x127 + x133 + x139 + x154 + x157 + x160 + x163 + x166 + x169 + x172

+ x175 + x181 + x187 + x193 + x199 + x205 + x211 + x217


