Lattice-based cryptography,
part 1: simplicity

D. J. Bernstein

University of lllinois at Chicago;
Ruhr University Bochum

2000 Cohen cryptosystem

Public key: vector of integers

Encryption:
1. Input message m € {0, 1}.

2. Generate rq, ..., ry €40, 1}
l.e. & = (r1 I’/\/) - {0, 1}N.

(Cohen says pick “half of the

integers in the public key at
random’: | guess this means

Ne2Zand Y ri = N/2.)

3. Compute and send ciphertext
C=(-1)"(nKi+ -+ ryKpn).

based cryptography,
simplicity

rnstein

ty of lllinois at Chicago;
Iversity Bochum

2000 Cohen cryptosystem

Public key: vector of integers

Encryption:
1. Input message m € {0, 1}.

2. Generate rq, ..., ry €40, 1},
l.e. & = (r1 I’/\/) - {O, 1}N.

(Cohen says pick “half of the

integers in the public key at
random”: | guess this means

Ne2Zand Y ri = N/2.)

3. Compute and send ciphertext
C=(-1)"(nKi+ -+ ryKpn).

How car

Key gen
Generatse

Ki € (u

Decrypti
m =0 if
otherwis

Why thi
K,' mod

rHK1+-

(Be care

tography,

is at Chicago;
ochum

2000 Cohen cryptosystem

Public key: vector of integers

Encryption:
1. Input message m € {0, 1}.

2. Generate rq, ..., ry €40, 1}
l.e. & = (r1 I’/\/) - {0, 1}N.

(Cohen says pick “half of the

integers in the public key at
random’ : | guess this means

Ne2Zand Y ri = N/2.)

3. Compute and send ciphertext

C=(-1)™(nKi+ -+ rmKp).

How can receiver

Key generation:
Generate s € {1, .

Decryption:
m=01f C mods
otherwise m = 1.

Why this works:
Ki mods=u; <|

I’1K1—|—' ' '—|—I’/\/KN

(Be careful! What

1g0;

2000 Cohen cryptosystem

Public key: vector of integers

Encryption:
1. Input message m € {0, 1}.

2. Generate rq, ..., ry €40, 1},
l.e. & = (r1 I’/\/) - {O, 1}N.

(Cohen says pick “half of the

integers in the public key at
random’”: | guess this means

Ne2Zand Y ri = N/2.)

3. Compute and send ciphertext
C=(-1)"(nKi+ -+ ryKpn).

How can receiver decrypt?

Key generation:

Decryption:
m=20if C mods <(s—1)
otherwise m = 1.

Why this works:
Kimods=u; < (s—1)/2]

nKi+---+ryKy mods <

(Be careful! What if all r; =

2000 Cohen cryptosystem

Public key: vector of integers

Encryption:
1. Input message m € {0, 1}.

2. Generate rq, ..., ry € 40,1}
l.e. & = (r1 I’/\/) - {0, 1}N.

(Cohen says pick “half of the

integers in the public key at
random’ : | guess this means

Ne2Zand Y ri = N/2.)

3. Compute and send ciphertext
C=(-1)"(nKi+ -+ ryKpn).

How can receiver decrypt?

Key generation:
Generate s € {1, ..., Y}

1o s —1
ui, ..., uny € S U, ..., ,
1 N N

K; € (uj+sZ)N{-X,...,X}.

Decryption:
m=0if Cmods < (s—1)/2;
otherwise m = 1.

Why this works:

Kimods=u; <(s—1)/2N so
—1

nKi+--+ryKy mod5§5 .

(Be careful! What if all r; = 07)

hen cryptosystem

ey: vector of integers

says pick “half of the

in the public key at
| guess this means

and Z Fi — /V/2.)

bute and send ciphertext

)M (K + -+ rnKpn).

How can receiver decrypt?

Key generation:

Decryption:
m=0if Cmods<(s—1)/2;
otherwise m = 1.

Why this works:
Kimods=u; <(s—1)/2N so

nKi+---+ryKy mods <

(Be careful! What if all r;, = 07)

s—1

Let's try

Debian:

Fedora:
Source:
Web (us

sagecel

Sage is |
+ many

+ a few

sage: 1
1000000
sage: T
3172135

sage:

DSsystem

of integers

‘half of the
olic key at

this means
= N/2.)

end ciphertext
o+ rvKpy).

How can receiver decrypt?

Key generation:
Generate s € {1, ..., Y}

U c<0 s 1
..... u ,
1 N >N

K; € (uj+sZ)N{-X,...,X}.

Decryption:
m=0if Cmods<(s—1)/2;
otherwise m = 1.

Why this works:
Kimods=u; <(s—1)/2N so

nKi+---+ryKy mods <

(Be careful! What if all r; = 07)

s—1

Let's try this on tl

Debian: apt inst
Fedora: dnf inst
Source: www.sage
Web (use print (.

sagecell.sagem:

Sage is Python 3
-+ many math libr

+ a few syntax di

sage: 1076 # pow
1000000

sage: factor(314
317213509 * 9903

sage:

How can receiver decrypt?

Key generation:
Generate s € {1,...,Y};

- 1o s—1
ui,...,Uu ,
1 N N

K; € (ui+sZ)N{-X,...,X}

Decryption:
m=0if Cmods<(s—1)/2;
otherwise m = 1.

Why this works:
Kimods=u; <(s—1)/2N so

s—1

nKi+---+ryKy mods <

(Be careful! What if all r;, = 07)

Let's try this on the comput

Debian: apt install sage
Fedora: dnf install sage:
Source: www.sagemath.org
Web (use print (X) to see .

sagecell.sagemath.org

Sage is Python 3
+ many math libraries

+ a few syntax differences:

sage: 1076 # power, not X
1000000

sage: factor(314159265358
317213509 * 990371647

sage:

How can receiver decrypt?

Key generation:

Generate s € {1,...,Y};

u1,...,uNE{O,...,

s—1

2N

Iy

K; € (uj+sZ)N{-X,..., X}

Decryption:

m=0ifCmods<(s—1)/2;

otherwise m = 1.

Why this works:

Kimods=u; <(s—1)/2N so

s—1

nKi+---+ryKy mods <

(Be careful! What if all r; = 07)

Let's try this on the computer.

Debian: apt install sagemath
Fedora: dnf install sagemath
Source: www.sagemath.org
Web (use print (X) to see X):

sagecell.sagemath.org

Sage is Python 3
-+ many math libraries

+ a few syntax differences:

sage: 1076 # power, not xor
1000000

sage: factor(314159265358979323)
317213509 * 990371647

sage:

| receiver decrypt?

eration:
2 secd{l,.... Y}

s —1
' 0,...,
”VE{ N

Iy

+sZ)N{—X, ... X}

on:

"Cmods <(s—1)/2;

em=1.

s works:

s=u; <(s—1)/2N so

+ryKy mod s <

s—1

full What if all r; = 07)

Let's try this on the computer.

Debian: apt install sagemath
Fedora: dnf install sagemath
Source: www.sagemath.org
Web (use print (X) to see X):

sagecell.sagemath.org

Sage is Python 3
+ many math libraries

+ a few syntax differences:

sage: 1076 # power, not xor
1000000

sage: factor(314159265358979323)
317213509 * 990371647

sage:

For inte;

Sage's
outputs

Matches
C mod s

Warning
C <O pr
in lower-

nonzero

Warning
Sage catl

decrypt?

(s —1)/2N so
s—1

mod s <

1f all Fi — O?)

Let's try this on the computer.

Debian: apt install sagemath
Fedora: dnf install sagemath
Source: www.sagemath.org
Web (use print (X) to see X):

sagecell.sagemath.org

Sage is Python 3
-+ many math libraries

+ a few syntax differences:

sage: 1076 # power, not xor
1000000

sage: factor(314159265358979323)
317213509 * 990371647

sage:

For integers C, s v
Sage's “Cls” alwe
outputs between (

Matches standard
C mods=C— |(

Warning: Typicall
C < 0 produces C?
in lower-level lang
nonzero output le:

Warning: For poly

Sage can make th

\/ so

s—1

- 0?)

Let's try this on the computer.

Debian: apt install sagemath
Fedora: dnf install sagemath
Source: www.sagemath.org
Web (use print (X) to see X):

sagecell.sagemath.org

Sage is Python 3
+ many math libraries

+ a few syntax differences:

sage: 1076 # power, not xor
1000000

sage: factor(314159265358979323)
317213509 * 990371647

sage:

For integers C, s

with s > 0

Sage's “Cls"” always produc

outputs between

0 and s —

Matches standard math defi
Cmods=C-—|C/s]s.

Warning: Typically
C < 0 produces C%s < 0
in lower-level languages, so

nonzero output leaks Input ¢

Warning: For po
Sage can make t

ynomials C

ne same mi

Let's try this on the computer.

Debian: apt install sagemath
Fedora: dnf install sagemath
Source: www.sagemath.org
Web (use print (X) to see X):

sagecell.sagemath.org

Sage is Python 3
-+ many math libraries

+ a few syntax differences:

sage: 1076 # power, not xor
1000000

sage: factor(314159265358979323)
317213509 * 990371647

sage:

For integers C, s

with s > 0,

Sage's “Cls"” always produces

outputs between

0 and s — 1.

Matches standard math definition:
Cmods=C-—|C/s]s.

Warning: Typically
C < 0 produces C%s < 0
in lower-level languages, so

nonzero output leaks input sign.

Warning: For po
Sage can make t

ynomials C,

ne same mistake.

this on the computer.

apt 1nstall sagemath
dnf install sagemath
WWW.sagemath.org

e print (X) to see X):
1.sagemath.org

Python 3
math libraries
syntax differences:

0"6 # power, not xor

actor(314159265358979323)
09 * 990371647

For integers C, s with s > 0,
Sage's “Cls"” always produces
outputs between 0 and s — 1.

Matches standard math definition:

Cmods=C-—|C/s]s.

Warning: Typically

C < 0 produces C%s < 0

in lower-level languages, so
nonzero output leaks input sign.

Warning: For polynomials C,

Sage can make the same mistake.

sage: N:
sage: X:
sage: Y:
sage: Y
1048576
sage: s;
sage: S
359512
sage: u
sage: u
[14485,
10493,

1€ computer.

all sagemath
all sagemath
math.org

X) to see X):
1th.org

aries
fferences:

er, not xor

159265358979323)
71647

For integers C, s with s > 0,
Sage's “Cls"” always produces
outputs between 0 and s — 1.

Matches standard math definition:

Cmods=C-—|C/s]s.

Warning: Typically

C < 0 produces C%s < 0

in lower-level languages, so
nonzero output leaks input sign.

Warning: For polynomials C,

Sage can make the same mistake.

sage: N=10
sage: X=2"50
sage: Y=2"20
sage: Y
1048576

sage: s=randrang

sage: s
359512

sage: u=[randran
- (s-1)
..... for 1 1
sage: u

[14485, 7039, 69
10493, 17333, 1
8213, 6370]

er.

math
nath

V™

or

979323)

For integers C, s with s > 0,
Sage's “Cls"” always produces
outputs between 0 and s — 1.

Matches standard math definition:

Cmods=C-—|C/s]s.

Warning: Typically

C < 0 produces C%s < 0

in lower-level languages, so
nonzero output leaks input sign.

Warning: For polynomials C,

Sage can make the same mistake.

sage: N=10
sage: X=2750
sage: Y=2"20
sage: Y
1048576

sage: s=randrange(1l,Y+1)

sage: s

359512

sage: u=[randrange (

Cee (s-1)//(2*N)+1
- for i in range(N

sage: u

[14485, 7039, 6945, 1589C
10493, 17333, 1397, 8656
8213, 6370]

For integers C, s with s > 0,
Sage's “Cls"” always produces
outputs between 0 and s — 1.

Matches standard math definition:

Cmods=C-—|C/s]s.

Warning: Typically

C < 0 produces C%s < 0

in lower-level languages, so
nonzero output leaks Iinput sign.

Warning: For polynomials C,

Sage can make the same mistake.

sage: N=10
sage: X=2"50
sage: Y=2"20
sage: Y
1048576

sage: s=randrange(1l,Y+1)

sage: s

359512

sage: u=[randrange(

Cee (s-1)//(2*xN)+1)
- for i in range(N)]

sage: u

[14485, 7039, 6945, 15890,
10493, 17333, 1397, 8656,
8213, 6370]

yers C, s with s > 0,
C%s’ always produces
between 0 and s — 1.

- standard math definition:

=C — |C/s]s.

. Typically

oduces C%s < 0

level languages, so
output leaks input sign.

. For polynomials C,

1 make the same mistake.

sage: N=10

sage: X=27"50

sage: Y=2"20

sage: Y

1048576

sage: s=randrange(1l,Y+1)

sage: s

359512

sage: u=[randrange (

- (s=1)//(2xN)+1)
- for i in range(N)]

sage: u

[14485, 7039, 6945, 15890,
10493, 17333, 1397, 8656,
8213, 6370]

sage: K
[870056
322006!
—-29476!
—66927!
528958:
426006
-64194
50154 3:
-58306:«
461093

vith s > 0,

ys produces
) and s — 1.

math definition:

_/s|s.

y
s < 0

uages, so
ks Input sign.

'nomials C,

o same mistake.

sage: N=10

sage: X=2"50

sage: Y=2"20

sage: Y

1048576

sage: s=randrange(1l,Y+1)

sage: s

359512

sage: u=[randrange(

Cee (s=1)//(2xN)+1)
- for i in range(N)]

sage: u

[14485, 7039, 6945, 15890,
10493, 17333, 1397, 8656,
8213, 6370]

sage: K=[ui+s*ra

e ceil(

sage: K

[870056918917829
822006576592695
—-29476554434581
-66927510008098
528958455221029
426006001074157
-64194017603053
501543495923784
-58306407539258
46109390243834]

es
1.

nition:

S1gn.

stake.

sage: N=10

sage: X=2750

sage: Y=2"20

sage: Y

1048576

sage: s=randrange(1l,Y+1)

sage: s

359512

sage: u=[randrange (

- (s=1)//(2xN)+1)
- for i in range(N)]

sage: u

[14485, 7039, 6945, 15890,
10493, 17333, 1397, 8656,
8213, 6370]

sage: K=[uit+s*randrange (
- ceil (- (X+ui)/s
- floor ((X-ui)/s
- for ui in ul
sage: K
[870056918917829,
322006576592695,
-2947655443453815,
-669275100080982,
528958455221029,
426006001074157,
-641940176080531,
5015434959237384,
-583064075392587,
46109390243834]

sage: N=10 6 sage: K=[ui+s*randrange (
sage: X=2"50 - ceil (- (X+ui)/s),
sage: Y=2720 Cee floor ((X-ui)/s)+1)
sage: Y Cee for ui in u]
1048576 sage: K
sage: s=randrange(1l,Y+1) [870056918917829,
sage: s 822006576592695,
359512 -294765544345815,
sage: u=[randrange(-669275100080982,

Co (s=1)//(2*N)+1) 528958455221029,

- for i in range(N)] 426006001074157,
sage: u -6419401760380531,

[14485, 7039, 6945, 15890, 501543495923784,

10493, 17333, 1397, 8656, -583064075392587,

8213, 6370] 46109390243834]

=250
=2"20

=randrange (1,Y+1)

=[randrange (

(s-1)//(2%N)+1)

for i in range(N)]

7039, 6945, 15890,
17333, 1397, 8656,
5370]

sage: K=[uit+s*randrange (

Ce ceil (- (X+ui)/s),
- floor ((X-ui)/s)+1)
- for ui in ul

sage: K

[870056918917829,
322006576592695,
-2947655443453815,
-669275100080982,
528958455221029,
426006001074157,
-641940176080531,
5015434959237384,
-583064075392587,
46109390243834]

sage: [
[14485,
10493,
3213, |
sage: u
[14485,
10493,
3213, |
sage: s
96821
sage: s
963821
sage: s,
179756

sage:

e(1,Y+1)

ge
// (2¥N)+1)
n range(N)]

45, 15390,
397, 8656,

sage: K=[ui+s*randrange (

Ce ceil (- (X+ui)/s),
Cee floor ((X-ui)/s)+1)
Ceel for ui in ul

sage: K

[870056918917829,
322006576592695,
-294765544345815,
-669275100080982,
5238958455221029,
426006001074157,
-641940176080531,
501543495923734,
-533064075392537,
46109390243834]

sage: [KiJ/s for
[14485, 7039, 69
10493, 17333, 1
8213, 6370]

sage: u

[14485, 7039, 69
10493, 17333, 1
8213, 6370]

sage: sum(K)%s

96821

sage: sum(u)

96321

sage: s//2
179756

sage:

sage: K=[uit+s*randrange (

Ce ceil (- (X+ui)/s),
- floor ((X-ui)/s)+1)
- for ui in ul

sage: K

[870056918917829,
322006576592695,
-294765544345315,
-669275100080982,
528958455221029,
426006001074157,
-6419401760380531,
5015434959237384,
-583064075392587,
46109390243834]

sage: [KiY/s for Ki in K]
[14485, 7039, 6945, 1589C
10493, 17333, 1397, 8656
8213, 6370]

sage: u

[14485, 7039, 6945, 15890
10493, 17333, 1397, 8656
8213, 6370]

sage: sum(K)%s

96821

sage: sum(u)

96321

sage: s//2

179756

sage:

sage: K=[ui+s*randrange (

Ce ceil (- (X+ui)/s),
Cee floor ((X-ui)/s)+1)
Ceel for ui in ul

sage: K

[870056918917829,
322006576592695,
-294765544345815,
-669275100080982,
5238958455221029,
426006001074157,
-641940176080531,
501543495923734,
-533064075392537,
46109390243834]

sage: [KiY/s for Ki in K]
[14485, 7039, 6945, 15890,

10493, 17333,

8213, 6370]

sage: u

1397, 8656,

[14485, 7039, 6945, 15890,

10493, 17333,

8213, 6370]

sage: sum(K)%s

96821

sage: sum(u)
96321

sage: s//2
179756

sage:

1397, 8656,

=[ui+s*randrange(
ceil (- (X+ui)/s),
floor ((X-ui)/s)+1)

for ui in ul

018917829,
576592695,
544345815,
5100080982,
155221029,
001074157,
0176080531,
195923784,
1075392587,
00243834]

sage: [KiY/s for Ki in K]
[14485, 7039, 6945, 15890,
10493, 17333, 1397, 8656,
8213, 6370]

sage: u

[14485, 7039, 6945, 15890,
10493, 17333, 1397, 8656,
8213, 6370]

sage: sum(K)%s

96821

sage: sum(u)

96321

sage: s//2

179756

sage:

sage: C
-202215:
sage: C
47024

sage: m

sage: s

ndrange (
-(X+ui)/s),
((X-ui)/s)+1)

in ul

sage: [KiY/s for Ki in K]
[14485, 7039, 6945, 15890,

10493, 17333,

8213, 6370]

sage: u

1397, 8656,

[14485, 7039, 6945, 15890,

10493, 17333,

8213, 6370]

sage: sum(K)%s

96821

sage: sum(u)
96321

sage: s//2
179756

sage:

1397, 8656,

sage: m=randrang
sage: r=[randran
Cee for 1 1
sage: C=(-1) "mxs
- for 1 in
sage: C
—-202215856043576
sage: C/s

47024

sage: m

0

sage: sum(r[i]*u

e for 1

)+1)

sage: [KiY/s for Ki in K]
[14485, 7039, 6945, 15890,

10493, 17333,

8213, 6370]

sage: u

1397, 8656,

[14485, 7039, 6945, 15890,

10493, 17333,

8213, 6370]

sage: sum(K)%s

96821

sage: sum(u)
96321

sage: s//2
179756

sage:

1397, 8656,

sage: m=randrange(2)
sage: r=[randrange(2)
- for i in range(N
sage: C=(-1) m*sum(xr[i]*K
....: for i in range(N)
sage: C

—-202215856043576

sage: C/s

47024

sage: m

0

sage: sum(r[i]*ul[il

- for i in range(

sage: [KiY/s for Ki in K]
[14485, 7039, 6945, 15890,
10493, 17333, 1397, 8656,
8213, 6370]

sage: u

[14485, 7039, 6945, 15890,
10493, 17333, 1397, 8656,
8213, 6370]

sage: sum(K)%s

96821

sage: sum(u)

96321

sage: s//2

179756

sage:

sage: m=randrange (2)

sage: r=[randrange(2)

Cee for i in range(N)]
sage: C=(-1) m*sum(r[i]*K[i]
....: for i in range(N))
sage: C

—-202215856043576

sage: C/s

47024

sage: m

0

sage: sum(r[i]*ul[il

Cee for i in range(N))

Ki’hs for Ki in K]
7039, 6945, 15890,
17333, 1397, 8656,

5370]

7039, 6945, 15890,
17333, 1397, 8656,
5370]

um (K) %s

am (u)

//2

sage: m=randrange(2)

sage: r=[randrange(2)

Cee for i in range(N)]
sage: C=(-1) m*sum(r[i]*K[i]
....: for i in range(N))
sage: C

—-202215856043576

sage: C/s

47024

sage: m

0

sage: sum(r[i]*ul[il

Cee for i in range(N))

Some pr

1. Func
System
that hav

2. Secul
We wan
“chosen-
where af
decrypti

Chosen-
against -
Decrypt

(Works

Ki in K]
45, 15390,
397, 8656,

45, 15890,
397, 8656,

sage: m=randrange (2)

sage: r=[randrange(2)

Cee for i in range(N)]
sage: C=(-1) m*sum(r[i]*K[i]
....: for i in range(N))
sage: C

—-202215856043576

sage: C/s

47024

sage: m

0

sage: sum(r[i]*ul[il

Cee for i in range(N))

Some problems wi

1. Functionality p
System can't encr
that have more th

2. Security proble
We want cryptosy
“chosen-ciphertex
where attacker cai
decryptions of oth

Chosen-ciphertext
against this systen
Decrypt —C. Flip

(Works whenever

sage: m=randrange(2)

sage: r=[randrange(2)

Ceel for i in range(N)]
sage: C=(-1) m*sum(r[i]*K[i]
....: for i in range(N))
sage: C

-202215856043576

sage: C/s

47024

sage: m

0

sage: sum(r[i]*ul[il

Cee for i in range(N))

Some problems with cryptos

1. Functionality problem:
System can't encrypt messa
that have more than 1 bit.

2. Security problem:

We want cryptosystems to r
“chosen-ciphertext attacks”
where attacker can see
decryptions of other cipherte

Chosen-ciphertext attack
against this system:
Decrypt —C. Flip result.

(Works whenever C £ 0.)

sage: m=randrange (2)

sage: r=[randrange(2)

Cee for i in range(N)]
sage: C=(-1) m*sum(r[i]*K[i]
....: for i in range(N))
sage: C

—-202215856043576

sage: C/s

47024

sage: m

0

sage: sum(r[i]*ul[il

Cee for i in range(N))

10
Some problems with cryptosystem

1. Functionality problem:
System can'’t encrypt messages
that have more than 1 bit.

2. Security problem:

We want cryptosystems to resist
“chosen-ciphertext attacks”
where attacker can see
decryptions of other ciphertexts.

Chosen-ciphertext attack
against this system:
Decrypt —C. Flip result.

(Works whenever C £ 0.)

=randrange (2)
=[randrange (2)

for i in range(N)]
=(-1) "m*sum(r [i] *K[i]

for i in range(N))

356043576

LS

am (r [i] *u[i]

for i in range(N))

Some problems with cryptosystem

1. Functionality problem:
System can’t encrypt messages
that have more than 1 bit.

2. Security problem:

We want cryptosystems to resist
“chosen-ciphertext attacks”
where attacker can see
decryptions of other ciphertexts.

Chosen-ciphertext attack
against this system:
Decrypt —C. Flip result.

(Works whenever C £ 0.)

10

2000 Co
fixing bc

1. Tran:
into mul
encrypti
Use new

B-bit in
m=(m
For each
Generat:

Cipherte
(—1)™(

(~1)m8

e(2)

ge(2)
n range(N)]

um (r [i]*K [i]
range(N))

[i]
in range(N))

Some problems with cryptosystem

1. Functionality problem:
System can’t encrypt messages
that have more than 1 bit.

2. Security problem:

We want cryptosystems to resist
“chosen-ciphertext attacks”
where attacker can see
decryptions of other ciphertexts.

Chosen-ciphertext attack
against this system:
Decrypt —C. Flip result.

(Works whenever C £ 0.)

10

2000 Cohen: cryp
fixing both of thes

1. Transform 1-bi
iInto multi-bit encr
encrypting each bl
Use new randomn

B-bit input messa,
m=(my,...,mg
For each i/ € {1, ..
Generate rjq, ...,

Ciphertext C:
(—1)™ (1K1 + -

.(;i)mB(fB,1K1

)]
[i]

Some problems with cryptosystem

1. Functionality problem:
System can'’t encrypt messages
that have more than 1 bit.

2. Security problem:

We want cryptosystems to resist
“chosen-ciphertext attacks”
where attacker can see
decryptions of other ciphertexts.

Chosen-ciphertext attack
against this system:
Decrypt —C. Flip result.

(Works whenever C £ 0.)

10

2000 Cohen: cryptosystem
fixing both of these problem

1. Transftorm 1-bit encryptic
into multi-bit encryption by
encrypting each bit separate
Use new randomness for eac

B-bit input message

m:(ml,...,mg) E{O,l}l
For each i € {1,..., B}:
Generate rj1, ..., rin € {0,

Ciphertext C:
(—1)™ (1K1 + -+ reNf

(—1)"B(rg 1K1+ -+ rg

Some problems with cryptosystem

1. Functionality problem:
System can'’t encrypt messages
that have more than 1 bit.

2. Security problem:

We want cryptosystems to resist
“chosen-ciphertext attacks”
where attacker can see
decryptions of other ciphertexts.

Chosen-ciphertext attack
against this system:
Decrypt —C. Flip result.

(Works whenever C £ 0.)

10

2000 Cohen: cryptosystem
fixing both of these problems.

1. Transform 1-bit encryption
into multi-bit encryption by
encrypting each bit separately.

Use new randomness for each bit.

B-bit input message

m:(ml,...,mg) E{O,l}B.
For each i € {1,..., B}:
Generate rj1,...,rin € {0, 1}.

Ciphertext C:
(—1)m1(r1,1K1 + - T r].,NKN)1

.(;i)mB(fB,1K1

re NKn).

11

oblems with cryptosystem

tionality problem:
can't encrypt messages
e more than 1 bit.

Ity problem:

t cryptosystems to resist
-ciphertext attacks”
tacker can see

ons of other ciphertexts.

ciphertext attack
this system:
—C. Flip result.

whenever C = 0.)

10

2000 Cohen: cryptosystem
fixing both of these problems.

1. Transform 1-bit encryption
into multi-bit encryption by
encrypting each bit separately.

Use new randomness for each bit.

B-bit input message

m:(ml,...,mg) 6{0,1}8.
For each i € {1,..., B}:
Generate rj1,...,rin € {0, 1}.

Ciphertext C:
(—1)m1(r1,1K1 + - r].,NKN)7

-(—1)m5(f5,1K1

re nKn).

11

2. Deral
reencryp

This is ¢
1999 Fu

Derandc
as crypt
using st:
(Watch

Decrypti
1. Input
. Decn

. Reco

2
3. Reco
4
5. Abor

th cryptosystem

roblem:
ypt messages
an 1 bit.

m:
stems to resist
- attacks”

1 see

er ciphertexts.

attack
n:

result.

C #0.)

10

2000 Cohen: cryptosystem
fixing both of these problems.

1. Transform 1-bit encryption
into multi-bit encryption by
encrypting each bit separately.

Use new randomness for each bit.

B-bit input message

m:(ml,...,mg) E{O,l}B.
For each i € {1,..., B}:
Generate rj1, ..., rin € {0, 1}.

Ciphertext C:
(—1)m1(r1,1K1 + - T r].,NKN)1

.(;i)mB(fB,1K1

re NKn).

11

2. Derandomize e

reencrypt during ¢

This is an

example

1999 Fujisaki—Oka

Derandomization:

as cryptographic f

using standard has
(Watch out: Is m

Decryption with re
1. Input C'. (May
2. Decrypt to obt.

3. Recom
4. Recom

ute 1’ -

oute C"

5. Abort if C" £ ¢

ystem

oes

esist

X tS.

10

2000 Cohen: cryptosystem

fixing both of these problems.

1. Transform 1-bit encryption

into multi-bit encryption by

encrypting each bit separately.

Use new randomness for each bit.

B-bit input message

m:(ml,...,mB)G{O,l}B.

For each i € {1,..., B}:
NS {O,].}.

Generate rj 1, . .

Ciphertext C:

(—1)m1(r1,1K1 + - r].,NKN)7

-(—1)m5(f5,1K1

re NKn).

11

2. Derandomize encryption,
reencrypt during decryption.

This is an example of “FO",
1999 Fujisaki-Okamoto tran

Derandomization: Generate
as cryptographic hash H(m)
using standard hash functior
(Watch out: Is m guessable

Decryption with reencryptio
1. Input C'. (Maybe C" # (
. Decrypt to obtain m’.

. Recompute C" from m’ .

2
3. Recompute r' = H(m').
4
5. Abort if C" £ C'.

2000 Cohen: cryptosystem
fixing both of these problems.

1. Transform 1-bit encryption
into multi-bit encryption by
encrypting each bit separately.

Use new randomness for each bit.

B-bit input message

m:(ml,...,mg) E{O,l}B.
For each i € {1,..., B}:
Generate rj1,...,rin € {0, 1}.

Ciphertext C:
(—1)m1(r1,1K1 + - T r].,NKN)1

.(;i)mB(fB,1K1

re NKn).

11

12
2. Derandomize encryption, and

reencrypt during decryption.

This is an example of “FO”, the
1999 Fujisaki-Okamoto transform.

Derandomization: Generate r
as cryptographic hash H(m),
using standard hash function H.
(Watch out: Is m guessable?)

Decryption with reencryption:
1. Input C'. (Maybe C' # C.)
2. Decrypt to obtain m’.

3. Recompute r' = H(m').

4. Recompute C" from m', r'.

5. Abort if C" £ C'.

hen: cryptosystem
th of these problems.

form 1-bit encryption
ti-bit encryption by
ng each bit separately.

"randomness for each bit.

DUt message
1,...,mg) € {0,115

i e41,...,B}:
N AT o VIS {0,1}.
xt C:

:r1,1K1 + 0+ rl,NKN)y

(re 1K1

re NKn).

11

2. Derandomize encryption, and
reencrypt during decryption.

This is an example of “FO”, the

1999 Fujisaki-Okamoto transform.

Derandomization: Generate r
as cryptographic hash H(m),
using standard hash function H.
(Watch out: Is m guessable?)

Decryption with reencryption:
1. Input C'. (Maybe C' # C.)
2. Decrypt to obtain m'.

3. Recompute r' = H(m').

4. Recompute C" from m’, r'.

5. Abort if C" £ C'.

12

Subset-s

Attacker
for (rq, .
checks r
against

This tak
e.g. 102.

“This fir

— This
applicati
encrypti

— Also,
to find ¢

tosystem
e problems.

. encryption
yption by
t separately.

ess for each bit.

ge
) € {0,1}5.
., B}:

ri N € {O,].}.

-+ nKpn),

re NKn).

11

2. Derandomize encryption, and

reencrypt during decryption.

This is an

1999 Fujisaki-Okamoto transform.

example of “FO", the

Derandomization: Generate r

as cryptographic hash H(m),

using standard hash function H.

(Watch out: Is m guessable?)

Decryption with reencryption:
1. Input C'. (Maybe C' # C.)
2. Decrypt to obtain m’.

3. Recom
4. Recom

oute r' = H(m').

oute C" from m', r'.

5. Abort if C" £ C'.

12

Subset-sum attack

Attacker searches

for (ri,...,ry),
checks n K1 + - --
against =(Cj.

This takes 2V eas
e.g. 1024 operatio

“This finds only o

— This is a proble
applications. Shot
encryption to leak

— Also, can easily
to find all bits of 1

n

h bit.

11

2. Derandomize encryption, and
reencrypt during decryption.

This is an example of “FO”, the
1999 Fujisaki-Okamoto transform.

Derandomization: Generate r
as cryptographic hash H(m),
using standard hash function H.
(Watch out: Is m guessable?)

Decryption with reencryption:
1. Input C'. (Maybe C' # C.)
2. Decrypt to obtain m'.

3. Recompute r' = H(m').

4. Recompute C" from m’, r'.

5. Abort if C" £ C'.

12

Subset-sum attacks

Attacker searches all possibi
for (ry,...,ry),

checks n Ky + -+ ryKpyy
against +=Cj.

This takes 2V easy operatio
e.g. 1024 operations for N =

“This finds only one bit m;y.

— This is a problem in som
applications. Should design
encryption to leak no inforn

— Also, can easily modify a
to find all bits of message.

2. Derandomize encryption, and
reencrypt during decryption.

This is an example of “FO”, the
1999 Fujisaki-Okamoto transform.

Derandomization: Generate r
as cryptographic hash H(m),
using standard hash function H.
(Watch out: Is m guessable?)

Decryption with reencryption:
1. Input C'. (Maybe C' # C.)
2. Decrypt to obtain m’.

3. Recompute r' = H(m').

4. Recompute C" from m', r'.

5. Abort if C" £ C'.

12

13
Subset-sum attacks

Attacker searches all possibilities

for (ri,...,ry),
checks n Ky + -+ ryKpy
against +=Cj.

This takes 2V easy operations:
e.g. 1024 operations for N = 10.

“This finds only one bit my."

— This is a problem in some
applications. Should design
encryption to leak no information.

— Also, can easily modify attack
to find all bits of message.

1domize encryption, and

t during decryption.

1N

jisaki-Okamoto transform.

example of “FO”, the

mization: Generate r

ographic hash H(m),
aindard hash function H.
out: Is m guessable?)

on with reencryption:
C'. (Maybe C' # C.)
/pt to obtain m’.

M

M

oute r' = H(m').

oute C" from m’, r'.

if € £ C

12

Subset-sum attacks

Attacker searches all possibilities
for (ri,...,ry),

checks n Ky + -+ ryKpy
against +=Cj.

This takes 2V easy operations:
e.g. 1024 operations for N = 10.

“This finds only one bit my."

— This is a problem in some
applications. Should design

encryption to leak no information.

— Also, can easily modify attack
to find all bits of message.

13

Modifiec
For each
rnKy +
containi

Multi-ta
Apply tf
one mes
message

Finding
total 2N
Finding
message
total 0.C

ncryption, and
ecryption.

> of “FO", the
moto transform.

Generate r
ash H(m),
sh function H.
guessable?)

encryption:
be C' £ C.)
ain m'.

= H(m'").

from m' r'

~/

' []

12

Subset-sum attacks

Attacker searches all possibilities
for (ri,...,ry),

checks n Ky + -+ ryKpy
against +=Cj.

This takes 2V easy operations:
e.g. 1024 operations for N = 10.

“This finds only one bit my."

— This is a problem in some
applications. Should design
encryption to leak no information.

— Also, can easily moditfy attack
to find all bits of message.

13

Modified attack:
For each (r1,...,1

nKiy+ -+ ryK
containing =Cq, =+

Multi-target attac
Apply this not jus
one message, but
messages sent to 1

Finding all bits In
total 2N operatior

Finding 1% of all
messages, huge in
total 0.01 - 2N op¢

and

the

sform.

r

1 H.
?)

.

)

12

Subset-sum attacks

Attacker searches all possibilities
for (ri,...,ry),

checks n Ky + - -+ ryKpy
against +=Cj.

This takes 2V easy operations:
e.g. 1024 operations for N = 10.

“This finds only one bit my."

— This is a problem in some
applications. Should design
encryption to leak no information.

— Also, can easily modify attack
to find all bits of message.

13

Modified attack:

For each (r1,..., ry), look
rnKy+---+ riyKy in hash
containing +Cq1,£Ch, ..., =+

Multi-target attack:

Apply this not just to B bits
one message, but all bits In
messages sent to this key.

Finding all bits in all messag
total 2N operations.

Finding 1% of all bits in all

messages, huge information
total 0.01 - 2N operations.

Subset-sum attacks

Attacker searches all possibilities
for (ri,...,ry),

checks n Ky + -+ ryKpy
against +=Cj.

This takes 2V easy operations:
e.g. 1024 operations for N = 10.

“This finds only one bit my."

— This is a problem in some
applications. Should design

encryption to leak no information.

— Also, can easily modify attack
to find all bits of message.

13

Modified attack:

For each (r1,..., ry), look up
rnKiy+ -+ ryKpy in hash table
containing =Cq1, £Co, ..., x(Cp.

Multi-target attack:

Apply this not just to B bits In
one message, but all bits in all
messages sent to this key.

Finding all bits in all messages:
total 2V operations.

Finding 1% of all bits in all
messages, huge information leak:

total 0.01 - 2N operations.

14

um attacks

- searches all possibilities
C ey I’/\/),

1K1+ -+ rvKy

::Cl.

es 2N easy operations:
A operations for N = 10.

\ds only one bit my.”

Is a problem in some
ons. Should design
on to leak no information.

can easily modify attack
|l bits of message.

13

Modified attack:

For each (rq,...,ry), look up
rnKiy+ -+ ryKpy in hash table
containing =Cq1, £Co, ..., x(Cp.

Multi-target attack:

Apply this not just to B bits In
one message, but all bits in all
messages sent to this key.

Finding all bits in all messages:
total 2N operations.

Finding 1% of all bits in all
messages, huge information leak:

total 0.01 - 2N operations.

14

“We car
N = 12¢
day, and
transfori

— Stan
take onl
to find (
with ry

Make hz
C — I’N/:
for all (1

Look up
hash tak

S

all possibilities

—|—I’/\/K/V

y operations:
ns for N = 10.

ne bit my."

m In some
Ild design
no information.

 modify attack
nessage.

13

Modified attack:

For each (r1,..., ry), look up
rnKiy+ -+ ryKpy in hash table
containing =Cq1, £Co, ..., x(Cp.

Multi-target attack:

Apply this not just to B bits In
one message, but all bits in all
messages sent to this key.

Finding all bits in all messages:
total 2V operations.

Finding 1% of all bits in all
messages, huge information leak:

total 0.01 - 2N operations.

14

“We can stop attz
N = 128, and cha
day, and applying
transform to each

— Standard subse
take only oN/2 op
to find (r1, ..., ry
with n K1 + -+ +

Make hash table ¢
C—rypriKnos
for all (I’N/2_|_]_, C e

Look up n K1 + -
hash table for eac

lities

NS.

= 10.

1ation.

ttack

13

Modified attack:

For each (rq, ..., ry), look up
rnKi+ -+ ryKpy in hash table
containing =Cq1, £Co, ..., x(Cp.

Multi-target attack:

Apply this not just to B bits In
one message, but all bits in all
messages sent to this key.

Finding all bits in all messages:
total 2N operations.

Finding 1% of all bits in all
messages, huge information leak:

total 0.01 - 2N operations.

14

“We can stop attacks by tal
N = 128, and changing keys
day, and applying all-or-notk
transform to each message.’

— Standard subset-sum att:
take only oN/2 operations

to find (r,...,ry) € {0,1}
with n K1+ -+ ryKy = ¢

Make hash table containing
C—rynpopiKnper — - —
for all (r/V/Q—I—l' C ey I’/\/).

Look up n K1+ --- + rN/QK
hash table for each (rq, ...,

Modified attack:

For each (r1,..., ry), look up
rnKiy+ -+ ryKpy in hash table
containing =Cq1, £Co, ..., xCp.

Multi-target attack:

Apply this not just to B bits In
one message, but all bits in all
messages sent to this key.

Finding all bits in all messages:
total 2V operations.

Finding 1% of all bits in all
messages, huge information leak:

total 0.01 - 2N operations.

14

15
“We can stop attacks by taking

N = 128, and changing keys every
day, and applying all-or-nothing
transform to each message.”

— Standard subset-sum attacks
take only oN/2 operations

to find (ry, ..., ry) € {0, 1}V
with n K1+ -+ ryKy = C.

Make hash table containing
C—rnpv1Knrr = — IvnKi
for all (I’N/2_|_]_, C ey I’N).

Look up r Ky +--- 4+ rypKy/ in
hash table for each (rq, ..., rN/Q).

14 15
| attack: “We can stop attacks by taking These af
(1, ..., ry), look up N = 128, and changing keys every structure
-4+ ryKpy In hash table day, and applying all-or-nothing one targ
g +Cq, £Co, ..., £Cp. transform to each message. (Actuall
rget attack: — Standard subset-sum attacks +(q, ...
11s not just to B bits In take only ON/2 operations Convert
sage, but all bits in all to find (ry,...,ry) € {0, 1}V total B1
s sent to this key. with n K1+ -+ ryKy = C. to find ¢
all bits in all messages: Make hash table containing have mc
operations. C—rnporiKnpoer — - — InKpn There ar
1% of all bits in al for all (ry/o41,---0rn). exploit t
s, huge information leak: Look up r Ky +--- 4+ rypKy/o In 1981 Sc
1 - 2N operations. hash table for each (rq, ..., rN/z). oN/2 op

v), look up
N In hash table

IC2, C e ::CB.

K:

t to B bits In
all bits in all
his key.

all messages:
S.

bits in all
formation leak:
rations.

14

“We can stop attacks by taking

N = 128, and changing keys every
day, and applying all-or-nothing
transform to each message.”

— Standard subset-sum attacks
take only oN/2 operations

to find (ry, ..., ry) € {0, 1}V
with n K1+ -+ ryKy = C.

Make hash table containing
C—rnpr1Knrr = — ivnKi
for all (I’N/2_|_]_, C ey I’N).

Look up r Ky +--- 4+ rypKy/o in
hash table for each (rq, ..., rN/Q).

These attacks exp
structure of proble
one target C into

(Actually have 2B
::Cl, C ey ::CB for
Convert into B1/2
total B1/22N/2 op
to find all B bits.
have more messag,

There are even mc
exploit the linear ¢

1981 Schroeppel-
oN/2 operations, s

Ip
table

5 1N

all

€S

leak:

14

15
“We can stop attacks by taking

N = 128, and changing keys every
day, and applying all-or-nothing
transform to each message.”

— Standard subset-sum attacks
take only oN/2 operations

to find (ry, ..., ry) € {0, 1}V
with n K1+ -+ ryKy = C.

Make hash table containing
C—rnpr1Knorr = — InKi
for all (r/V/Q—I—l' C ey I’/\/).

Look up r Ky +---+ rypKy/o In
hash table for each (rq, ..., rN/z).

These attacks exploit linear
structure of problem to cony
one target C into many targ

(Actually have 2B targets
::Cl, Ce ey ::CB for one mess
Convert into BY/22N/2 targe
total B1/22N/2 operations
to find all B bits. Also, may
have more messages to atta

There are even more ways t«
exploit the linear structure.

1981 Schroeppel-Shamir:
oN/2 operations, space oN/4

“We can stop attacks by taking

N = 128, and changing keys every
day, and applying all-or-nothing
transform to each message.”

— Standard subset-sum attacks
take only oN/2 operations

to find (ry, ..., ry) € {0, 1}V
with nK;1+ -+ ryKy = C.

Make hash table containing
C—rnpr1Knorr = — inKi
for all (I’N/2_|_]_, C ey I’N).

Look up r Ky +--- 4+ rypKy/o in
hash table for each (rq, ..., rN/Q).

15

These attacks exploit linear
structure of problem to convert
one target C into many targets.

(Actually have 2B targets

Convert into B1/22N/2 targets:
total B1/22N/2 operations

to find all B bits. Also, maybe
have more messages to attack.)

There are even more ways to
exploit the linear structure.

1981 Schroeppel-Shamir:
oN/2 operations, space oN/4

+(Cq,...,E£Cpg for one message.

16

' stop attacks by taking

3, and changing keys every
applying all-or-nothing

n to each message.”

lard subset-sum attacks
Y oN/2 operations

r1,...,rN)E{O,1}N
1+ -+ ryKy =C.

sh table containing
+1KN/241 = — INKN
N/2+10 -+)

K1+ -+ rypKyps in
le for each (r1,..., ry).

15

These attacks exploit linear
structure of problem to convert
one target C into many targets.

(Actually have 2B targets

Convert into B1/22N/2 targets:
total B1/2pN/2 operations

to find all B bits. Also, maybe
have more messages to attack.)

There are even more ways to
exploit the linear structure.

1981 Schroeppel-Shamir:
oN/2 operations, space oN/4

+(Cq,...,E£Cpg for one message.

16

2010 Hc
claimed
May—Me

2011 Be
20.291N ‘

2016 Oz

2019 Es:
operatio

2020 Bo
Schrotte

Quantur

Multi-ta

cks by taking
nging keys every
all-or-nothing
message."

t-sum attacks
arations

) € {0, 1}V
fNKN = C.

ontaining
1 — - — InKp
,I’/\/).

e rN/ZKN/Q In
V(e vg2).

15

These attacks exploit linear
structure of problem to convert
one target C into many targets.

(Actually have 2B targets

Convert into B1/22N/2 targets:
total B/2oN/2 operations

to find all B bits. Also, maybe
have more messages to attack.)

There are even more ways to
exploit the linear structure.

1981 Schroeppel-Shamir:
oN/2 operations, space oN/4

+(Cq,...,E£Cpg for one message.

16

2010 Howgrave-Gi
20.311N of

May—Meurer corre

claimed

2011 Becker—Coro

20.291N operations

2016 Ozerov: 2V-2

2019 Esser—May:
operations, but wi

2020 Bonnetain—E
Schrottenloher—Sh

Quantum attacks:

Multi-target speed

INg
; every
1INg

1cks

NN

‘,N/Z N
fN/2)-

15

These attacks exploit linear
structure of problem to convert
one target C into many targets.

(Actually have 2B targets

Convert into B1/22N/2 targets:
total B/2oN/2 operations

to find all B bits. Also, maybe
have more messages to attack.)

There are even more ways to
exploit the linear structure.

1981 Schroeppel-Shamir:
oN/2 operations, space oN/4

+(Cq,...,E£Cpg for one message.

16

2010 Howgrave-Graham—Jot

20.311N

claimed operations.

May—Meurer correction: 29-

2011 Becker—Coron—Joux:

20.291N operations.

2016 Ozerov: 20-287N gpera

2019 Esser—-May: claimed 2
operations, but withdrew clz

2020 Bonnetain—Bricout—
Schrottenloher—Shen: 20-283

Quantum attacks: various p

Multi-target speedups: prob

These attacks exploit linear
structure of problem to convert
one target C into many targets.

(Actually have 2B targets

Convert into B1/22N/2 targets:
total B1/2oN/2 operations

to find all B bits. Also, maybe
have more messages to attack.)

There are even more ways to
exploit the linear structure.

1981 Schroeppel-Shamir:
oN/2 operations, space oN/4.

+(Cq,...,E£Cp for one message.

16

2010 Howgrave-Graham—Joux:

20.311N

claimed operations. 2011

May—Meurer correction: 29-337N.

2011 Becker—Coron—Joux:

20.291N operations.

2016 Ozerov: 29-287N gpherations.

2019 Esser—May: claimed 20-2>°N
operations, but withdrew claim.

2020 Bonnetain—Bricout—
Schrottenloher—=Shen: 20-283N

Quantum attacks: various papers.

Multi-target speedups: probably!

17

'tacks exploit linear
> of problem to convert
et C Iinto many targets.

v have 25 targets

into B1/2pN/2 targets:
[29N/2 operations

Il B bits. Also, maybe
re messages to attack.)

'€ even more ways to
he linear structure.

hroeppel-Shamir:
erations, space oN/4

, £Cp for one message.

16

2010 Howgrave-Graham—Joux:

20.311N

claimed operations. 2011

May—Meurer correction: 29-337N.

2011 Becker—Coron—Joux:

20.291N operations.

2016 Ozerov: 29-287N gpherations.

2019 Esser—May: claimed 20-2>°N
operations, but withdrew claim.

2020 Bonnetain—Bricout—
Schrottenloher—=Shen: 2V-283N

Quantum attacks: various papers.

Multi-target speedups: probably!

17

Variants

2003 Re
(without
(—1)™(
m(K1/2

To make
modify |
and (K
Also be

2009 val
Vaikunt:
C=m-
m = (C

Be caref

loit linear

'm to convert

many targets.

targets

one message.

oN/2 targets:
erations

Also, maybe
es to attack.)

re ways to
tructure.

Shamir:
pace oN/4

16

2010 Howgrave-Graham—Joux:
claimed 29311V gperations. 2011

May—Meurer correction: 29-337N.

2011 Becker—Coron—Joux:

20.291N operations.

2016 Ozerov: 29-287N gpherations.

2019 Esser—May: claimed 20-2>°N
operations, but withdrew claim.

2020 Bonnetain—Bricout—
Schrottenloher—=Shen: 20-283N,

Quantum attacks: various papers.

Multi-target speedups: probably!

17

Variants of crypto

2003 Regev: Cohe
(without credit), t
(=) (nKi+--
m(K1/2) + Ky -

To make this work
modify keygen to
and (Kl — ul)/S ¢
Also be careful wi

2009 van Dijk—Ge
Vaikuntanathan: |
C=m+nKy+-
m=(C mods)m
Be careful to take

/ert
ets.

age.

ts:

be
ck.)

16

2010 Howgrave-Graham—Joux:

20.311N

claimed operations. 2011

May—Meurer correction: 29-337N.

2011 Becker—Coron—Joux:

20.291N operations.

2016 Ozerov: 29-287N gpherations.

2019 Esser—May: claimed 20-2>°N
operations, but withdrew claim.

2020 Bonnetain—Bricout—
Schrottenloher—=Shen: 2V-283N

Quantum attacks: various papers.

Multi-target speedups: probably!

17

Variants of cryptosystem

2003 Regev: Cohen cryptos
(without credit), but replace
(—1)m(r1K1 + - rNKN)
m(K1/2) +nKy+ -+ ry

To make this work,

modify keygen to force Kj ¢
and (K1 —u1)/se€l+2Z
Also be careful with u; bour

2009 van Dijk—Gentry—Haley
Vaikuntanathan: K; € 2u; 4
C=m+nKi+- -+ ryK,
m = (C mod s) mod 2.

Be careful to take s € 1 + 2

2010 Howgrave-Graham—Joux:

20.311N

claimed operations. 2011

May—Meurer correction: 29-337N.

2011 Becker—Coron—Joux:

20.291N operations.

2016 Ozerov: 29-287N gpherations.

2019 Esser—May: claimed 20-2>°N
operations, but withdrew claim.

2020 Bonnetain—Bricout—
Schrottenloher—=Shen: 20-283N

Quantum attacks: various papers.

Multi-target speedups: probably!

17

18

Variants of cryptosystem

2003 Regev: Cohen cry

ptosystem

(without credit), but re
(—1)m(r1K1 + - N

vlace
KN) with

m(K1/2) +nKi+ -+ ryKy.

To make this work,

modify keygen to force
and (K1 —u1)/s €1+
Also be careful with u;

K, € 2Z
27
bounds.

2009 van Dijk—Gentry—Halevi—
Vaikuntanathan: K; € 2u; + sZ;

C=m+nKi+ -+ ryKpn;

m = (C mod s) mod 2.

Be careful to take s €1 + 2Z.

wgrave-Graham—Joux:
20-311N operations. 2011

urer correction: 20-337N.

cker—Coron—Joux:
operations.

20.287N

erov: operations.

ser—May: claimed 20-2°°N

ns, but withdrew claim.

nnetain—Bricout—

nloher=Shen: 20-283N.

n attacks: various papers.

rget speedups: probably!

17

Variants of cryptosystem

2003 Regev: Cohen cryptosystem
(without credit), but replace
(=1)™"(nK1+ -+ ryKpy) with
m(K1/2) +nKi+ -+ ryKy.

To make this work,

modify keygen to force Ky € 2Z
and (K1 —u1)/se€el+2Z
Also be careful with u; bounds.

2009 van Dijk—Gentry—Halevi—
Vaikuntanathan: K; € 2u; + sZ;
C=m+nKi+- -+ ryKy;
m = (C mod s) mod 2.
Be careful to take s € 1

2Z.

18

Homom:

|t u,-/s 1
DGHV s

Take twi
C=m-
C/ — m/

with sm.

C+C' -

s(g+ ¢’
m-+ m'

-aham—Joux:
yerations. 2011
ction: 20-337N.

n—Joux:

87N operations.

claimed 20-295N
thdrew claim.

ricout—
en: 20.283N_

various papers.

ups: probably!

17

Variants of cryptosystem

2003 Regev: Cohen cryptosystem

(without credit), but replace
(=1)"(nK1+ -+ ryKp) with
m(K1/2) +nKi+ -+ ryKy.

To make this work,

modify keygen to force Ky € 2Z
and (K1 —u1)/sel+2Z

Also be careful with u; bounds.

2009 van Dijk—Gentry—Halevi—
Vaikuntanathan: K; € 2u; + sZ;
C=m+nKi+- -+ ryKy;
m = (C mod s) mod 2.

Be careful to take s € 1 + 2Z.

18

Homomorphic enc

If u;/s is small en
DGHYV system is f

Take two cipherte:
C = m+ 2¢ + sq,
C'=m"+2 +s
with small € € €.

C+C'=m+nm'
s(q+ q'). This de
m -+ m’' mod 2 if ¢

CC' = mm'+2(en
s(--+). This decry

mm' if em’ +¢e'm

IX.

2011
337N

tions.

).255N

m.

apers.

ably!

17

Variants of cryptosystem

2003 Regev: Cohen cryptosystem
(without credit), but replace
(=1)"(nK1+ -+ ryKpy) with
m(K1/2) +nKi+ -+ ryKy.

To make this work,

modify keygen to force Ky € 2Z
and (K1 —u1)/se€l+2Z
Also be careful with u; bounds.

2009 van Dijk—Gentry—Halevi—
Vaikuntanathan: K; € 2u; + sZ;
C=m+nKi+- -+ ryKy;
m = (C mod s) mod 2.
Be careful to take s € 1

2Z.

18

Homomorphic encryption

If u;/s is small enough then
DGHYV system is homomorp

Take two ciphertexts:
C = m+ 2¢+ sq,
C'=m+2€¢ +sq
with small €, ¢/ € Z.

C+C'=m+m+2(+¢
s(q + q'). This decrypts to
m-+ m' mod 2 if e + € is sn

CC'=mm' +2(em' +€'m+:
s(---). This decrypts to

mm' if em’ +€e'm <+ 2¢€’ is s

Variants of cryptosystem

2003 Regev: Cohen cry
(without credit), but re

ptosystem
blace

(=1)"(nK1+ -+ ryKp) with
m(K1/2) +nKi+ -+ ryKy.

To make this work,

modify keygen to force
and (K1 —u1)/s €1+
Also be careful with u;

K, € 2Z
27
bounds.

2009 van Dijk—Gentry—Halevi—
Vaikuntanathan: K; € 2u; + sZ;

C=m+nKi+ -+ ryKpn;

m = (C mod s) mod 2.

Be careful to take s €1+ 2Z.

18

Homomorphic encryption

If u;/s is small enough then 2009
DGHYV system is homomorphic.

Take two ciphertexts:
C = m+ 2¢+ sq,
C'=m' 42 + sd
with small €, ¢/ € Z.

C+C'=m+m +2(e+¢€)+
s(qg + q'). This decrypts to
m -+ m' mod 2 if € + € is small.

CC' = mm' +2(em' +€' m+2ee’) +
s(--+). This decrypts to

mm' if em’ + 'm <+ 2¢€’ is small.

19

18 19
of cryptosystem Homomorphic encryption sage: N
gev: Cohen cryptosystem If u;j/s is small enough then 2009 sage: &
- credit), but replace DGHYV system is homomorphic. sage: T
1K1+ - + ryKpy) with sage: X
17 NN Take two ciphertexts: sage: s
)+ K1+ -+ ryKy.
C = m+ 2¢+ sq, sage: s

» this work, C'=m +2¢ +sq 08488731
ceygen to force K1 € 2Z with small €, € Z. sage: u
—u;)l/sléhlJrsZ.d C+C'=m+m+2e+€)+
caretul with uj bounds. s(g + q'). This decrypts to sage: U
1 Dijk—Gentry—Halevi— m -+ m' mod 2 if € + €' is small. 247, 4

_ . . _ 772, 2
nathan: K; € 2uj + sZ; CC'= mm' +2(em + €' m+2ee’) +
- K1+ -+ ryKp; . Sa8e

s(---). This decrypts to

mod s) mod 2.) ;o .
| mm' if em + ¢ m+ 2¢e€’ is small.
ul to take s € 1 + 2Z.

System

N cryptosystem

yut replace

4
\

force K1 € 2Z
-1+ 2Z.
th u; bounds.

ntry—Halevi—
K; € 2u; + sZ;
-+ IvK
od 2.
scl+2Z.

18

Homomorphic encryption

If u;/s is small enough then 2009
DGHYV system is homomorphic.

Take two ciphertexts:
C =m+ 2+ sq,
C'=m'+2¢ +sq
with small €, ¢/ € Z.

C+C'=m+m +2(e+¢€)+
s(qg + q'). This decrypts to
m -+ m' mod 2 if € + € is small.

CC' = mm' +2(em' +€' m+2ee’) +
s(--+). This decrypts to

mm' if em’ + 'm <+ 2¢€’ is small.

19

sage: N=10

sage: E=2710
sage: Y=2"50
sage: X=2"30
sage: s=1+2*xrand
sage: S
984387308997925

sage: u=[randran
Cee for 1 1
sage: u

[247, 418, 365,
772, 209, 673,

sage:

ystem

with

ds.
/1—

-sZ:

18

Homomorphic encryption

If u;/s is small enough then 2009
DGHYV system is homomorphic.

Take two ciphertexts:
C =m+ 2+ sq,
C'=m+2€¢ +sq
with small €, ¢/ € Z.

C+C'=m+m+2(e+¢€)+
s(q + q'). This decrypts to
m -+ m' mod 2 if € + € is small.

CC' = mm'+2(em'+€'m+2ee’)+
s(---). This decrypts to

mm' if em’ + 'm <+ 2¢€’ is small.

19

sage: N=10

sage: E=2710

sage: Y=2"50

sage: X=2"80

sage: s=1+2*randrange (Y/4
sage: S

984387308997925

sage: u=[randrange(E)
- for i in range(N
sage: u

[247, 418, 365, 738, 123,
772, 209, 673, 47]

sage:

Homomorphic encryption

If u;/s is small enough then 2009
DGHYV system is homomorphic.

Take two ciphertexts:
C =m+ 2+ sq,
C'=m"+2¢ +sq
with small €, ¢/ € Z.

C+C'=m+m +2(e+¢€)+
s(g + q'). This decrypts to
m -+ m' mod 2 if € + € is small.

CC' = mm' +2(em' +€' m+2ee’) +
s(--+). This decrypts to

mm' if em’ + 'm <+ 2¢€’ is small.

19

sage:
sage:
sage:
sage:
sage:

sage:

N=10

E=2710

Y=2"50

X=2"80
s=1+2*randrange(Y/4,Y/2)

S

984887303997925

sage:

sage:

[247,
772,

sage:

u=[randrange (E)
for i in range(N)]
u
418, 365, 738, 123, 735,
209, 673, 47]

20

orphic encryption

>

small enough then 2009

ystem i1s homomorphic.

O
-

ciphertexts:

2€ + sq,
- 2¢' + sq’

4

le, e € Z

m+m +2(e+¢€)+

). This decrypts to

mod 2 if € + € is small.

mm' +2(em’ +e'm+2e€’) +
[his decrypts to

m' 4+ €'m + 2¢€’ is small.

19

sage: N=10

sage: E=2710

sage: Y=2"50

sage: X=2"80

sage: s=1+2*randrange(Y/4,Y/2)
sage: s

984887308997925

sage: u=[randrange(E)

- for i in range(N)]
sage: u

[247, 418, 365, 738, 123, 735,
772, 209, 673, 47]

sage:

20

sage: K
[687473.
-11115!
794301
688173
742362
102334
-35716:
112142
-11096
—23562:

ryption

bugh then 2009
jomomorphic.

XtS:

/

q
7.

+2(e +¢€') +
Crypts to
+ €' is small.

" +e'm+2ee’)+
pts to
+ 2e€’ is small.

19

sage: N=10

sage: E=2710

sage: Y=2"50

sage: X=2730

sage: s=1+2*randrange(Y/4,Y/2)
sage: s

084887308997925

sage: u=[randrange(E)

Cee for i in range(N)]
sage: u

[247, 418, 365, 738, 123, 735,
772, 209, 673, 47]

sage:

20

sage: K=[2*ui+s*

e ceil(

sage: K
[687473338058640
-11115391791007
794301459533783
688178021083749
742362470968200
102334582783153
-35716867939855
112142161911996
-11096748622762
—23562893773500

2009
hic.

1all.

e’)+

mall.

19

sage:
sage:
sage:
sage:
sage:

sage:

N=10

E=2710

Y=2"50

X=2"80
s=1+2*randrange(Y/4,Y/2)

S

984887303997925

sage:

sage:

u=[randrange (E)
for i in range(N)]

u

[247, 418, 365, 738, 123, 735,
772, 209, 673, 47]

sage:

20

sage: K=[2*ui+s*randrange
- ceil (- (X+2xui)
- floor ((X-2*ui)
- for ui in ul
sage: K
[687473338058640662659869
-11115391791007200837703
794301459533783434896055
68817802108374958901751,
742362470968200823035396
102334582783153951505479
-3571686793985588767300C
112142161911996460105144
-11096748622762224955871
—-23562893778500377052338

N=10

E=2710

Y=2"50

X=2"80
s=1+2*randrange(Y/4,Y/2)

sage:
sage:
sage:
sage:
sage:
sage: s
084887308997925

sage: u=[randrange(E)
..... for i in range(N)]
sage: u

[247, 418, 365, 738, 123, 735,
772, 209, 673, 47]

sage:

20

sage: K=[2*ui+s*randrange(
ceil (- (X+2%ui)/s),
floor ((X-2*ui)/s)+1)

..... for ui in ul
sage: K
[687473338058640662659869,
-1111539179100720083770339,
794301459533783434896055,
68817802108374958901751,
742362470968200823035396,
1023345827831539515054795,
-357168679398558876730006,
1121421619119964601051443,
-1109674862276222495587129,

—-235628937785003770523381]

21

=10

=210

=250

=2"80
=1+2*randrange(Y/4,Y/2)

08997925
=[randrange (E)

for i in range(N)]

18, 365, 738, 123, 735,
09, 673, 47]

20

sage: K=[2*ui+s*randrange (

Ce ceil (- (X+2%*ui)/s),
e floor ((X-2*ui)/s)+1)

- for ui in ul
sage: K
[687473338058640662659869,

-1111539179100720083770339,
794301459533783434896055,
68817802108374958901751,
7142362470963200823035396,
1023345827831539515054795,
-357168679398558876730006,
1121421619119964601051443,
—1109674862276222495587129,
-235628937785003770523381]

21

sage:

2094088

sage:
2703
sage:
1
sage:
1

sage:

C

range (Y/4,Y/2)

ge (E)
n range(N)]

738, 123, 735,
47]

20

sage: K=[2*ui+s*randrange(
Ce ceil (- (X+2%ui)/s),
- floor ((X-2*ui)/s)+1)
- for ui in ul
sage: K
[5687473338058640662659869,
-1111539179100720083770339,
794301459533783434896055,
63317302108374958901751,
7142362470968200823035396,
1023345827831539515054795,
-357168679398558876730006,
1121421619119964601051443,
-1109674862276222495587129,
—-235628937785003770523381]

21

sage: m=randrang
sage: r=[randran
Cee for 1 1
sage: C=m+sum(r[
Cee for 1 1
sage: C
2094088748748247
sage: C/s

2703

sage: (C/s)h2

1

sage: m

1

sage:

,Y/2)

)]

735,

20

sage: K=[2*ui+s*randrange (
Ce ceil (- (X+2%ui)/s),
- floor ((X-2*ui)/s)+1)
- for ui in ul
sage: K
[587473338058640662659869,
-1111539179100720083770339,
794301459533783434896055,
63317302108374958901751,
742362470968200823035396,
1023345827831539515054795,
-3571638679398558876730006,
1121421619119964601051443,
-1109674862276222495587129,
—-235628937785003770523381]

21

sage: m=randrange(2)
sage: r=[randrange(2)
- for i in range(N
sage: C=m+sum(r[i]*K[i]
- for i in range(N
sage: C
2094088748748247210016703
sage: C/s

2703

sage: (Chs)h2

1

sage: m

1

sage:

sage: K=[2*ui+s*randrange
Ce ceil (- (X+2%ui)/s),
- floor ((X-2*ui)/s)+1)
- for ui in ul
sage: K
[5687473338058640662659869,
-1111539179100720083770339,
794301459533783434896055,
63317302108374958901751,
7142362470968200823035396,
1023345827831539515054795,
-3571638679398558876730006,
1121421619119964601051443,
-1109674862276222495587129,
—-235628937785003770523381]

21

sage: m=randrange (2)

sage: r=[randrange(2)

Cee for i in range(N)]
sage: C=m+sum(r[i]*K[i]

Cee for i in range(N))
sage: C
2094088748748247210016703
sage: C/s

2703

sage: (C/s)h2

1

sage: m

1

sage:

22

=[2*%ui+s*randrange(
ceil (- (X+2%ui)/s),
floor ((X-2*ui)/s)+1)

for ui in ul

338058640662659369,
39179100720083770339,
159533783434396055,
02108374958901751,
170963200823035396,
827331539515054795,
3679398558876730006,
1619119964601051443,
(4862276222495587129,
3937785003770523381]

21

sage
sage

sage

: m=randrange (2)

: r=[randrange(2)

: for i in range(N)]
: C=m+sum(r[i]*K[i]

: for i in range(N))

. C

2094088748748247210016703

sage

2703

sage:

1

sage:

1

. Cls

(C%s) %2

sage:

22

sage:

-517223

sage:

4971

sage:

1

sage:

1

sage:

C.

randrange (
- (X+2%ui)/s),
((X-2*%ui)/s)+1)

in ul

662659869,
20083770339,
434896055,
58901751,
323035396,
9515054795,
3876730006,
4601051443,
22495587129,
3770523381]

21

sage: m=randrange (2)
sage: r=[randrange(2)
..... for i in range(N)]
: C=m+sum(r[i]*K[i]
..... for i in range(N))
sage: C
2094088748748247210016703
sage: C/s

2703
sage:

1

(C%s) %2

sage: m
1

sage:

22

sage: m2=randran
sage: r2=[randra
..... for 1
sage: C2=m2+sum/(
..... for 1
sage: (2
-517223537379827
sage: C2/s
4971
sage:

1

(C2%s) %2

sage: m2
1

sage:

/s),
/s)+1)

21

sage: m=randrange(2)
sage: r=[randrange(2)
..... for i in range(N)]
: C=m+sum(r[i]=*K[i]
..... for i in range(N))
sage: C
2094088748748247210016703
sage: C/s

2703
sage:

1

(C%s) %2

sage: m
1

sage:

22

sage: m2=randrange(2)
sage: r2=[randrange(2)
..... for i in range(
sage: C2=m2+sum(r2[i]*K[i
..... for i in range(
sage: (2
-51722353737982737270129
sage: C2/s
4971
sage:

1

(C2%s) %2

sage: m2
1

sage:

sage: m=randrange (2)
sage: r=[randrange(2)
..... for i in range(N)]
: C=m+sum(r [i]*K[i]
..... for i in range(N))
sage: C
2094088748748247210016703
sage: C/s

2703
sage:

1

(C%s) %2

sage: m
1

sage:

22

23

sage: m2=randrange(2)

sage: r2=[randrange(2)

for i in range(N)]

sage: C2=m2+sum(r2[i]*K[il]

sage:

for i in range(N))

C2

—51722353737982737270129

sage:

4971

sage:

1

sage:

1

sage:

C2%s

(C2%s) %2

m2

=randrange (2)
=[randrange (2)

for i in range(N)]
=m+sum (r [i]*K[i]

for i in range(N))

(48748247210016703

LS

Chs) 1h2

22

sage: m2=randrange(2)

sage: r2=[randrange(2)

Ceel for i in range(N)]
sage: C2=m2+sum(r2[i]=*K[il]
- for i in range(N))
sage: (2
-51722353737982737270129
sage: C2/s

4971

sage: (C2%s) %2
1

sage: m2

1

sage:

23

sage: (!
7674

sage: (!
1343661.

sage:

Because

are smal

have C -
(C" mod
(C mod

Refinem
to ciphe
Gentry)

e(2)

ge(2)
n range(N)]

i]*K [i]
n range(N))

210016703

22

sage: m2=randrange(2)

sage: r2=[randrange(2)

Cee for i in range(N)]
sage: C2=m2+sum(r2[i]*K[il]
Cee for i in range(N))
sage: (2
-51722353737982737270129
sage: C2/s

4971

sage: (C2%s) %2
1

sage: m2

1

sage:

23

sage: (C+C2)%s
7674

sage: (CxC2)7s
13436613

sage:

Because C mod s
are small enough «
have C 4+ C' mod :
(C" mod s) and Ci
(C mod s)(C’" moc

Refinements: add
to ciphertexts, boc
Gentry) to control

)]

))

22

sage: m2=randrange(2)

sage: r2=[randrange(2)

Ceel for i in range(N)]
sage: C2=m2+sum(r2[i]=*K[il]
- for i in range(N))
sage: (2
-51722353737982737270129
sage: C2/s

4971

sage: (C2%s) %2
1

sage: m2

1

sage:

23

sage: (C+C2)%s

7674

sage: (CxC2)7%s
13436613

sage:

Because C mod s and C' mc
are small enough compared

have C + C' mod s = (C mc
(C" mod s) and CC' mod s

(C mod s)(C' mod s).

Refinements: add more nois
to ciphertexts, bootstrap (2
Gentry) to control noise, etc

sage: m2=randrange(2)

sage: r2=[randrange(2)

Cee for i in range(N)]
sage: C2=m2+sum(r2[i]=*K[il]
Cee for i in range(N))
sage: (2
-51722353737982737270129
sage: C2/s

4971

sage: (C2%s) %2
1

sage: m2

1

sage:

23

sage: (C+C2)%s
7674

sage: (CxC2)Ys
13436613

sage:

Because C mod s and C' mod s
are small enough compared to s,
have C +C' mod s = (C mod s) +
(C'" mod s) and CC' mod s =

(C mod s)(C' mod s).

Refinements: add more noise
to ciphertexts, bootstrap (2009
Gentry) to control noise, etc.

24

2=randrange (2)
2=[randrange(2)
for i in range(N)]
2=m2+sum(r2 [1]*K[i]
for i in range(N))
2
53737982737270129
27%s

C2%s) %2

23

sage: (C+C2)%s
7674

sage: (CxC2)7%s
13436613

sage:

Because C mod s and C' mod s
are small enough compared to s,
have C +C' mod s = (C mod s) +
(C" mod s) and CC' mod s =

(C mod s)(C' mod s).

Refinements: add more noise
to ciphertexts, bootstrap (2009
Gentry) to control noise, etc.

24

| attices

This iIs c

This is ¢

ge(2)

nge (2)

in range(N)]
r2 [i]*K [i]
in range(N))

37270129

23

sage: (C+C2)%s

7674

sage: (CxC2)7Ys
13436613

sage:

Because C mod s and C' mod s
are small enough compared to s,
have C +C' mod s = (C mod s) +
(C'" mod s) and CC' mod s =

(C mod s)(C' mod s).

Refinements: add more noise
to ciphertexts, bootstrap (2009
Gentry) to control noise, etc.

24

| attices

This 1s a lettuce:

N)]

N))

23

sage: (C+C2)%s
7674

sage: (CxC2)7%s
13436613

sage:

Because C mod s and C' mod s
are small enough compared to s,
have C +C' mod s = (C mod s) +
(C" mod s) and CC' mod s =

(C mod s)(C' mod s).

Refinements: add more noise
to ciphertexts, bootstrap (2009
Gentry) to control noise, etc.

24

| attices

This 1s a lettuce:

24

sage: (C+C2)%s Lattices
7674 -
This is a lettuce:
sage: (CxC2)7Ys
13436613
sage:

Because C mod s and C' mod s
are small enough compared to s,
have C +C' mod s = (C mod s) +
(C'" mod s) and CC' mod s =

(C mod s)(C' mod s).

Refinements: add more noise
to ciphertexts, bootstrap (2009
Gentry) to control noise, etc.

S
1§’sﬁ>x

—ea S

7 AR
N N \\\\\\
S e e /a \ D

C+C2) %s

CxC2) %s

C mod s and C' mod s

| enough compared to s,

- C' mod s = (C mod s) +
s)and CC' mod s =
s)(C' mod s).

ents: add more noise
rtexts, bootstrap (2009
to control noise, etc.

24

| attices

This 1s a lettuce:

25

L attices,

Assume
are R-lir

IS a rank

Vi, ..., \
Is a basi

and C' mod s
“ompared to s,

5 = (C mod s) +
C''mod s =

| s).

more noise
tstrap (2009
noise, etc.

24

| attices

This 1s a lettuce:

=

9

25

L attices, mathems

Assume that Vg, ..
are R-linearly inde
l.e., RVi +---+F
{rtVi+-+rpV,
Is a D-dimensiona

LV + -+ ZVp -
{nVi+---+nrpV,
Is a rank-D length

Vi,...,Vp
Is a basis of this |

to s,

24

| attices

This 1s a lettuce:

S S

25

Lattices, mathematically

Assume that Vq,...,Vp € R
are R-linearly independent,
i.,e., RVi+- -4+ RVp =
{r1V1—|—---—|—rDVD 1, ...,
Is a D-dimensional vector sf

ZVy + -
{rl\/l—l—---—l—rDVD ...,
is a rank-D length-N lattice

Vi,...,Vp
Is a basis of this lattice.

| attices

This 1s a lettuce:

25

26

Lattices, mathematically

Assume that Vq,...,Vp € RN

are R-linearly independent,

l.e., RVi+ -4+ RVp =
{r1V1—|—---—|—rDVD ; r1,...,rD€R}
Is a D-dimensional vector space.

ZVy + -+ 2ZVp =
{I’1V1—|—---——I’D\/D ' n,..., EZ}
Is a rank-D length-N lattice.

Vi,...,Vp
Is a basis of this lattice.

 lettuce:

25

26
Lattices, mathematically

Assume that Vq,...,Vp € RN

are R-linearly independent,

i.,e., RVi+- -4+ RVp =
{r1V1—|—---—|—I’DVD ' rn,...,rp < R}
Is a D-dimensional vector space.

IV + -+ ZLVp =
{rl\/l—l—---—l—rDVD ' rn,...,rp EZ}
Is a rank-D length-N lattice.

Vi,...,Vp
Is a basis of this lattice.

Short ve

Given V;

what

1S

in L = £

0.

“SVP: s
What is

1932

Le

(LLL) al
compute

with
lengt

en.

1 O

Typically

25

26
Lattices, mathematically

Assume that Vq,...,Vp € RN

are R-linearly independent,

l.e., RVi+ -+ RVp =
{r1V1—|—---—|—rDVD ' n,...,p ER}
Is a D-dimensional vector space.

IV + -+ ZLVp =
{I’lVl—I—---——rDVD r,...,p EZ}
Is a rank-D length-N lattice.

Vi,...,Vp
Is a basis of this lattice.

Short vectors in la

Given \/1, \/2, C ,\
what is shortest ve
in L =2ZV] +--- -

0.

“SVP: shortest-ve
What is shortest n

1982 Lenstra—Len:
(LLL) algorithm ri
computes a nonze
with length at mo

length of shortest
Typically ~1.02P

25

26
Lattices, mathematically

Assume that Vq,...,Vp € RN

are R-linearly independent,

l.,e., RVi + -4+ RVp =
{r1V1—|—---—|—rDVD ' rn,..., < R}
Is a D-dimensional vector space.

ZVi + -+ ZVp =

{r1V1—|—---—|—rDVD ,...,ID EZ}
Is a rank-D length-N lattice.

Vi,..., Vp
Is a basis of this lattice.

Short vectors in lattices

Given V4, Vs, ...,Vp € ZNV.

what

Is shortest vector

inL =2+ +ZVp?

0.

“SVP: shortest-vector proble

What is shortest nonzero ve

1932

| enstra—Lenstra—lLovas

(LLL) algorithm runs in poly

computes a nonzero vector |

with
lengt

ength at most 2D/2

n of shortest nonzero v

Typically ~1.02P instead of

26
Lattices, mathematically

Assume that Vq,...,Vp € RN

are R-linearly independent,

l.e., RVi+ -4+ RVp =
{r1V1—|—---—|—rDVD ' n,...,p ER}
Is a D-dimensional vector space.

ZV, ZVp —

{I’lVl—I—---——rDVD 1,...,IpD EZ}
ength-/N lattice.

IS a rank-D

Vi,...,Vp
Is a basis of this lattice.

27
Short vectors in lattices

Given V4, V5, ...,Vp € ZNV.
what iIs shortest vector
inlL=2ZV1 +---+ 2ZVp?

0.

“SVP: shortest-vector problem”:
What is shortest nonzero vector?

1982 Lenstra—Lenstra—Lovasz
(LLL) algorithm runs in poly time,
computes a nonzero vector in L
with
length of shortest nonzero vector.
Typically ~1.02P instead of 2D/2

ength at most 2D/2 times

26 27

~mathematically Short vectors in lattices Subset-s

that Vl,...,VDERN Given V1,V2,...,\/DEZN, One way

iearly independent, what is shortest vector where C
. — ' — . ?

-+ +VRVD i inL=2ZVi +---+ ZVp" Choose

-...+.rDL|).r1,...,rDE } 0 VO:(_

Imensional vector space. Vi — (K

2\ “SVP: shortest-vector problem” : y p
D= What is shortest nonzero vector? 2= (

---+rDVD:r1,...,rD€Z} Ce ey
-D length-N lattice. 1982 Lenstra—Lenstra—Lovasz Wy = (K

(LLL) algorithm runs in poly time,

/D . Define L
computes a nonzero vector in L

s of this lattice. . . L contal
with length at most 2D/2 times
Vo + 1V
length of shortest nonzero vector.
(0, rL A\, .

Typically ~1.02P instead of oD/2

26
tically
., Vp € R
pendent,
Wp =
I M,..., D ER}

| vector space.

-N lattice.

attice.

Short vectors in lattices

Given V4, V5, .. ., Vp € ZN,
what iIs shortest vector
inlL=2Z\Vi +---+ 2ZVp?

0.

“SVP: shortest-vector problem”:
What is shortest nonzero vector?

1982 Lenstra—Lenstra—Lovasz

(LLL) algorithm runs in poly time,

computes a nonzero vector in L
with
length of shortest nonzero vector.

ength at most 2D/2 times

Typically ~1.02P instead of oD/2

21

Subset-sum lattice

One way to find (.
where C = rn K1 +

Choose M. Define

Vo = (—C,0,0,...
Vi = (K1, \,0, . ..
Vo = (K2, 0,)\, . ..
Vi = (K, 0,0, ..

Define L = Z\Vy +
L contains the shc
\/O_|_r1\/1_|_..._|_
(O, rl)\, Ce e I’/\/)\).

26

rp < R}
)dCE.

I’DEZ}

Short vectors in lattices

Given V4, V5, .. ., Vp € ZN,
what is shortest vector
inlL=2Z\Vi +---+ 2ZVp?

0.

“SVP: shortest-vector problem”:
What is shortest nonzero vector?

1982 Lenstra—Lenstra—Lovasz

(LLL) algorithm runs in poly time,

computes a nonzero vector in L
with
length of shortest nonzero vector.

ength at most 2D/2 times

Typically ~1.02P instead of 20/2.

27

Subset-sum lattices

One way to find (rq, ..., m
where C = n Ky + -+ ry!

Choose \. Define
Wo =(-C,0,0,...,0),
Vi = (K1, \0,..., 0),

Vi = (Kn,0,0,...,).

Define L =ZVy + --- + ZV,
[contains the short vector
Vo +nWi+--+ryVWy =
(0, L, ..., Iy,

Short vectors in lattices

Given V4, V5, .. ., Vp € ZV,
what iIs shortest vector
inlL=2Z\Vi+---+ 2ZVp?

0.

“SVP: shortest-vector problem”:
What is shortest nonzero vector?

1982 Lenstra—Lenstra—Lovasz

(LLL) algorithm runs in poly time,

computes a nonzero vector in L
with length at most 2D/2 times

length of shortest nonzero vector.

Typically ~1.02P instead of oD/2

21

28
Subset-sum lattices

One way to find (rq, ..., rn)
where C = n K1+ -+ ryKy:

Choose M. Define
W =(-C,0,0,...,0),

Vi = (Kn,0,0,...,).

Define L = ZVg + - - - + ZV).
L contains the short vector
Vo + Wi+ + riyVWy =
(O, rl)\, C ey I’/\/)\).

ctors In lattices

shortest vector
I+ -+ LVp?

hortest-vector problem™:
shortest nonzero vector?

nstra—Lenstra—Lovasz

gorithm runs in poly time,

S @ honzero vector In L
oth at most 2D/2 times

f shortest nonzero vector.

;) ~1.020 instead of 20/2.

27

Subset-sum lattices

One way to find (rq, ..., rn)

where C = n K1+ -+ ryKy:

Choose \. Define
Woo =(-C,0,0,...,0),
Vi = (K1, M\0,..., 0),

Vi = (Kp,0,0,...,).

Define L = ZWy + - - - + ZV).

L contains the short vector
Vo + Vi + -+ riyWy =
(O, rl)\, Ce e I’NA).

28

LLL is f:
finds thi

1991 Sc
algorithr
LLL find
lattice.

vs.-short

2012 Sc
that mo

subset-s
2011 Be

Is this tr
exponen

ttices

ctor problem™:
onzero vector?

stra—Lovasz

Ins in poly time,

ro vector in L
st 2D/2 times

nonzero vector.

instead of 20/2.

21

Subset-sum lattices

One way to find (rq, ..., rn)

where C = n K1+ -+ ryKy:

Choose M. Define
Woo =(-C,0,0,...,0),

Viy = (Kn,0,0,...,).

Define L = ZVy + - - - + ZV).

[contains the short vector
Vo + Vi + -+ riyWy =
(O, rl)\, Ce e I’/\/)\).

23

LLL is fast but alr
finds this short ve

1991 Schnorr—Euc
algorithm spends |
LLL finding shorte

lattice. Many sub:
vs.-shortness impr

2012 Schnorr—She
that modern form

subset-sum proble
2011 Becker—Coro

Is this true? Open
exponent of this a

m’

ctor?

Z

/ time,

n L

NES
ector.

2D/2.

27

Subset-sum lattices

One way to find (rq, ..., rn)

where C = n K1+ -+ ryKy:

Choose \. Define
Wo =(-C,0,0,...,0),
Vi = (K1, \0,..., 0),

Viy = (Kn, 0,0, ...,).

Define L = ZWy + - - - + ZV).

L contains the short vector
Vo + Vi + -+ riyWy =
(O, rl)\, Ce e I’NA).

28

LLL s fast but almost never
finds this short vector in L.

1991 Schnorr—Euchner “BK.

algorithm spends more time
LLL finding shorter vectors |

lattice. Many subsequent ti
vs.-shortness Improvements.

2012 Schnorr—Shevchenko ¢
that modern form of BKZ s

subset-sum problems faster
2011 Becker—Coron—Joux.

Is this true? Open: What's
exponent of this algorithm?

Subset-sum lattices

One way to find (rq, ..., rn)

where C = nKy + -+ ryKy:

Choose M. Define
Woo =(-C,0,0,...,0),
Vi = (K1, \0,..., 0),

Vi = (Kn,0,0,...,).

Define L = ZVg + - - - + ZV).
[contains the short vector
Vo + Wi+ + riyVWy =
(0, L, ..., ryA).

23

LLL i1s fast but almost never
finds this short vector in L.

1991 Schnorr—Euchner “BKZ"

algorithm spends more time than
LLL finding shorter vectors in any

lattice. Many subsequent time-
vs.-shortness improvements.

2012 Schnorr—Shevchenko claim
that modern form of BKZ solves

subset-sum problems faster than
2011 Becker—Coron—Joux.

Is this true? Open: What's the
exponent of this algorithm?

29

um lattices

rto find (rq, ..., rn)

:I’lKl—l—---—l—rNK/\/:

A. Define
C,0,0,...,0),

7, 0,0,...,).

=Ly + -+ LV).
ns the short vector
1+ -+ ryVWy =

C I’NA).

28

LLL s fast but almost never
finds this short vector in L.

1991 Schnorr—Euchner “BKZ"
algorithm spends more time than
LLL finding shorter vectors in any

lattice. Many subsequent time-
vs.-shortness Improvements.

2012 Schnorr—Shevchenko claim
that modern form of BKZ solves

subset-sum problems faster than
2011 Becker—Coron—Joux.

Is this true? Open: What's the
exponent of this algorithm?

29

| attice

Recall K
Each u;

Note g

Define

Vi = (E
Vo = (0,
Vi3 = (0,

Vi = (0
Define [
[contal

(g1E, g1
(q1E, 2¢

o+ ZVY.
rt vector

rnViy =

23

LLL i1s fast but almost never
finds this short vector in L.

1991 Schnorr—Euchner “BKZ"
algorithm spends more time than
LLL finding shorter vectors in any

lattice. Many subsequent time-
vs.-shortness improvements.

2012 Schnorr—Shevchenko claim
that modern form of BKZ solves

subset-sum problems faster than
2011 Becker—Coron—Joux.

Is this true? Open: What's the
exponent of this algorithm?

29

Lattice attacks on

Recall K; = 2u; +
Each u; 1s small:
Note qu,' — q,-Kj

Define

Vi = (E, Ko, K3,.
Vo = (0, —K1,0,..
V3 = (O, 0, —Kq, .
W =1(0,0,0,...,

Define L = ZV7 +
[contains g1V1 +
(g1E, g1 K2 — 2K
(g1E,2q1u2 — 2q7

28

LLL i1s fast but almost never
finds this short vector in L.

1991 Schnorr—Euchner “BKZ"

algorithm spends more time than
LLL finding shorter vectors in any

lattice. Many subsequent time-
vs.-shortness Improvements.

2012 Schnorr—Shevchenko claim
that modern form of BKZ solves

subset-sum problems faster than
2011 Becker—Coron—Joux.

Is this true? Open: What's the
exponent of this algorithm?

29

Lattice attacks on DGHV ke

Recall K; = 2u; 4+ sqg; = sq;
Each u; iIs small: u; < E.
Note qu,' — q,-Kj = 2qju,- —

Define

Define L =2V + - - - + ZV,
[contains g1V + - + gpn\

(1E, g1 Ko — oK1, ...) =
((71E, 2q1U> — 2gou1, . .)

29
LLL is fast but almost never Lattice attacks on DGHV keys

finds this short vector in L.

Recall K; = 2u; 4+ sq; = sq;.
1991 Schnorr—Euchner “BKZ" Each u; is small: u; < E.
algorithm spends more time than Note q;K; — q;K; = 2q;u; — 2q;u;.

LLL finding shorter vectors in any Define

lattice. Many subsequent time-
vs.-shortness improvements.

2012 Schnorr-Shevchenko claim V3 =(0,0,—Kq, ..., 0);
that modern form of BKZ solves '

subset-sum problems faster than Vw =(0,0,0,...,—K7).

2011 Becker—Coron—Joux. Define L = ZV4 + - - - + ZV)y.

Is this true? Open: What's the L contains g1V + - - + gyVWy =
exponent of this algorithm? (q1E, 1Ko — oK1, ...) =

(Q1E, 2q1U> — 2gou1, . .)

st but almost never
s short vector in L.

IIBKZ”
n spends more time than

hnorr—Euchner

iIng shorter vectors In any

Many subsequent time-
ness Improvements.

hnorr—Shevchenko claim
dern form of BKZ solves
um problems faster than
cker—Coron—Joux.

ue? Open: What's the
t of this algorithm?

29

Lattice attacks on DGHV keys

Recall K; = 2u; 4+ sq; = sq;.

Each u; is small: u; < E.

Note qu,' — q,-Kj = 2qju,' — 2q,-uj.
Define

Vi =(E, Ky, K3,...,Kp);

Vo = (0, —K1,0,...,0);

V3 = (0,0,—Kl,...,O),

Vv =(0,0,0,...,—Kj7).

Define L = ZV] + - -+ + ZV).

L contains g1V + -+ gyVy =

(1E, g1 Ko — oK1, ...) =
((71E, 2q1U> — 2gou1, . .)

30

sage: V
sage: V
sage: V'
sage: V
sage: V
sage:
sage:
5964378
sage: T
9843873
sage: S
9843873

sage:

NOSt never
~tor In L.

"“BKZ"
nore time than

hner

r vectors In any
sequent time-
ovements.

vchenko claim
of BKZ solves
ms faster than

n—Joux.

- What's the
lgorithm?

29

Lattice attacks on DGHV keys

Recall K; = 2u; 4+ sq; = sq;.

Each u; is small: u; < E.

Note qu,' — q,-Kj — 2qju,- — 2q,-uj.
Define

Vi =(E, Ky, K3, ..., Kn);

Vo = (0, —K1,0,...,0);

V3 =(0,0,—K1,...,0);

Vw =(0,0,0,...,—K7).

Define L = ZV] + - - - 4+ ZV).

[contains g1V + -+ gyVy =
(E, q1K2 — @Ky, ...) =

(Q1E, 2q1U> — 2gou, . .)

30

sage:
sage:
sage:
sage:
sage:
sage:

sage:

V=matrix.1
V=—K[0]*V
Vtop=copy (
Vtop[0]=E
V[0]=Vtop
q0=V.LLL()

qO

596487875

sage:

round (K [0]

984887303997925

sage:

S

984887303997925

sage:

than
n any

ne-

laim
dlves
than

the

29

Lattice attacks on DGHV keys

Recall K; = 2u; 4+ sq; = sq;.
Each u; is small: u; < E.
Note qu,' — q,-Kj = 2qju,' — 2q,-uj.

Define

Define L = ZV] + - - - 4+ ZV).
[contains g1V1 + -+ gyVy =

(1E, g1 Ko — oK1, ...) =
((71E, 2q1U> — 2gou, . .)

30

sage: V=matrix.identity (N
sage: V=-K[0]*V

sage: Vtop=copy(K)

sage: Vtopl[O]=E

sage: V[0]=Vtop

sage: qO0=V.LLL()[0] [0]/E
sage: qO

596437375

sage: round(K[0]/q0)
9843837303997925

sage: s

9843837308997925

sage:

Lattice attacks on DGHV keys

Recall K; = 2u; 4+ sq; = sq;.
Each u; is small: u; < E.

Note qu,' — q,-Kj — 2qju,- — 2q,-uj.

Define

Define L = ZVy + - - - + ZV).
[contains g1V1 + - -+ gyVy =

(1E, 1Ko — oK1, ...) =
(Q1E,2CI1U2 — 2qou1, ..)

30

sage: V=matrix.identity(N)
sage: V=-K[0]*V

sage: Vtop=copy(K)

sage: Vtop[O]=E

sage: V[0]=Vtop

sage: qO0=V.LLL() [0][0]/E
sage: qO

596437375

sage: round(K[0]/q0)
9843373038997925

sage: s

984337308997925

sage:

31

ittacks on DGHV keys

= 2U; + 5q; ~ sq;.
s small: u; < E.
i —qiKj = 2qju; — 2q;u;.

1K21K31 7KN)1
—K1,0,...,0);
0,—Ki,...,0);

0,0, ,—%(1)

—ZVi + -+ ZVy.

ns g1Vi +---+gnWn =
Ko —qoKy,...) =

Uy — 2qou, .. .).

30

V=matrix.identity(N)
V=-K[0]*V

sage:
sage:
Vtop=copy (K)
Vtop[0]=E
V[0]=Vtop
q0=V.LLL() [0] [0]/E
sage: qO

596487875

sage: round(K[0]/q0)
984887308997925

sage:
sage:
sage:

sage:

sage: S
984887308997925

sage:

31

sage: V
(1024,
-11115.
794301
688178
742362
102334
-35716:
112142
-11096
—-23562.
sage: V
(0, -58
O, O, |

sage:

DGHV keys

59, =~ Sq;.
1 < E.
— 2qju,- — 2q,-uj.

30

sage: V=matrix.identity(N)
sage: V=-K[0]*V

sage: Vtop=copy(K)

sage: Vtopl[O]=E

sage: V[0]=Vtop

sage: qO0=V.LLL() [0][0]/E
sage: qO

596437375

sage: round(K[0]/q0)
9843373038997925

sage: s

984337308997925

sage:

31

sage: V[O]

(1024,
-11115391791007
794301459533783
638178021083749
742362470968200
102334582783153
-35716867939855
112142161911996
-11096748622762
-23562893773500

sage: V[1]

(0, -58747333805
o, 0, 0, 0, O,

sage:

2quﬁ

30

sage: V=matrix.identity(N)
sage: V=-K[0]*V

sage: Vtop=copy(K)

sage: Vtopl[O]=E

sage: V[0]=Vtop

sage: qO0=V.LLL()[0] [0]/E
sage: qO

596437375

sage: round(K[0]/q0)
98438373038997925

sage: s

9843837308997925

sage:

31

sage: V[O]

(1024,
-11115391791007200837703
794301459533783434896055
68817802108374958901751,
742362470968200823035396
10233458278315395150547¢
-35716867939855887673000
112142161911996460105144
-1109674862276222495587 1
—-235628937738500377052338

sage: VI[1]

(0, -5874733380586406626E
o, 0, 0, 0, 0, 0, 0, O)

sage:

sage: V=matrix.identity(N)
sage: V=-K[0]*V

sage: Vtop=copy(K)

sage: Vtopl[O]=E

sage: V[0]=Vtop

sage: qO0=V.LLL() [0][0]/E
sage: qO

596437375

sage: round(K[0]/q0)
9843373038997925

sage: s

984337308997925

sage:

31

sage: V[O]

(1024,
-1111539179100720083770339,
794301459533783434896055,
68817802108374958901751,
742362470968200823035396,
1023345827831539515054795,
-357168679398558876730006,
1121421619119964601051443,
-1109674862276222495587129,
-235628937785003770523381)

sage: V[1]

(0, -587473338058640662659869,
o, 0, 0, 0, 0, 0, 0, O)

sage:

32

=matrix.identity(N)
=-K[0] *V
top=copy (K)
top[0] =E

[0]=Vtop
0=V.LLL() [0] [0]/E

)

(5

ound (K [0] /q0)
08997925

08997925

31

sage: V[O]

(1024,
-1111539179100720083770339,
794301459533783434896055,
68817802108374958901751,
742362470968200823035396,
1023345827831539515054795,
-357168679398558876730006,
1121421619119964601051443,
-1109674862276222495587129,
-235628937785003770523381)

sage: VI[1]

(0, -587473338058640662659869,
o, 0, 0, 0, 0, 0, 0, O)

sage:

32

sage: V
(610803
370302
—-22561
110012
135946.
sage: Q
sage: q
6108035:
sage: q
1056189
sage: q
1742566

sage:

dentity (N)

K)

[0] [O]/E

31

sage: V[O]

(1024,
-1111539179100720083770339,
794301459533783434896055,
68817802108374958901751,
742362470968200823035396,
1023345827831539515054795,
-357168679398558876730006,
1121421619119964601051443,
-1109674862276222495587129,
-235628937785003770523381)

sage: V[1]

(0, -587473338058640662659869,
o, 0, 0, 0, 0, 0, 0, O)

sage:

32

sage: V.LLL(Q) [0]
(610803584000, 1
37030242334, 84
—-225613319442,
1100126026284,
1359463649043,
sage: q=[Ki//s £
sage: qlO]*E
610803584000
sage: q[O]*K[1]-
1056189937254
sage: qlO0]*K[9]-
174256676348

sage:

31

sage: V[O]

(1024,
-1111539179100720083770339,
794301459533783434896055,
68817802108374958901751,
742362470968200823035396,
1023345827831539515054795,
-357168679398558876730006,
1121421619119964601051443,
-1109674862276222495587129,
-235628937785003770523381)

sage: VI[1]

(0, -587473338058640662659869,
o, 0, 0, 0, O, 0, 0, O)

sage:

32

sage: V.LLLQ) [0]
(610803584000, 1056189937
37030242384, 84589845469
—-225618319442, 363547143
1100126026284, -31315097
1359463649048, 174256676

sage: q=[Ki//s for Ki in

sage: qlO]x*E

610803584000

sage: qlO]*K[1]-q[1]*K[O]

1056189937254

sage: qlO0]J*K[9]-q[9]*K[0O]

174256676348

sage:

sage: V[O]

(1024,
-1111539179100720083770339,
794301459533783434896055,
68817802108374958901751,
742362470968200823035396,
1023345827831539515054795,
-357168679398558876730006,
1121421619119964601051443,
-1109674862276222495587129,
-235628937785003770523381)

sage: V[1]

(0, -587473338058640662659869,
o, 0, 0, 0, 0, 0, 0, O)

sage:

32

33
sage: V.LLL(Q) [0]

(610803584000, 1056189937254,
37030242384, 845898454693,
—-2205618319442, 363547143644,
1100126026284, -313150978512,
1359463649048, 174256676348)

sage: g=[Ki//s for Ki in K]

sage: qlO]*E

610803584000

sage: qlO]*K[1]-q[1]*K[O]

1056189937254

sage: qlO0]J*K[9]-q[9]*K[O]

174256676343

sage:

[O]

39179100720083770339,
159533783434896055,
02108374958901751,
170963200823035396,
827331539515054795,
3679398558876730006,
1619119964601051443,
(4862276222495587129,
39037785003770523381)
[1]
r473338058640662659869,
0, 0, 0, 0, 0, 0)

32

sage: V.LLL(Q) [0]
(610803584000, 1056189937254,
37030242384, 845898454698,
-225618319442, 363547143644,
1100126026284, -313150978512,
1359463649048, 174256676348)

sage: q=[Ki//s for Ki in K]

sage: qlO]x*E

610803534000

sage: qlO]*K[1]-q[1]*K[O]
1056189937254

sage: qlO0]J*K[9]-q[9]*K[O]
174256676348

sage:

33

2009 Dc(
can cho«

these |at

2011 Co
Tibouch

by modi

shows tI
encrypti
with a s

e.g. all ¢
with pul

2012 Ch
Need big

20083770339,
434896055,
58901751,
323035396,
9515054795,
3876730006,
4601051443,
22495587129,
3770523381)

3640662659869,
0, 0, 0)

32

sage: V.LLL(Q) [0]
(610803584000, 1056189937254,
37030242384, 845898454698,
-225618319442, 363547143644,
1100126026284, -313150978512,
1359463649048, 174256676348)

sage: g=[Ki//s for Ki in K]

sage: qlO]*E

6103803534000

sage: qlO]*K[1]-q[1]*K[O]
1056189937254

sage: qlO0]J*K[9]-q[9]*K[O]
174256676348

sage:

33

2009 DGHYV analy

can choose key siz
these lattice attac

2011 Coron—Mand
Tibouchi: reduce

by modifying DGFE
shows that fully h
encryption can be
with a simple sche

e.g. all attacks tal
with public keys o

2012 Chen—Nguye
Need bigger DGH'

9869,

32

sage: V.LLL(Q) [0]
(610803584000, 1056189937254,
37030242384, 845898454698,
-2256138319442, 363547143644,
1100126026284, -313150978512,
1359463649048, 174256676348)

sage: q=[Ki//s for Ki in K]

sage: qlO]x*E

610803534000

sage: qlO]*K[1]-q[1]*K[O]
1056189937254

sage: qlO0]J*K[9]-q[9]*K[0]
174256676348

sage:

33

2009 DGHV analysis:
can choose key sizes where

these lattice attacks fail.

2011 Coron—Mandal—Naccac

Tibouc

ni: reduce key sizes

by moc

ifying DGHV. “This

shows that fully homomorpkt

encryption can be implemen

with a simple scheme.”

e.g. all

attacks take >272 ¢y

with public keys only 802Mi

2012 Chen—Nguyen: faster :
Need bigger DGHV/CMNT

sage: V.LLL(Q) [0]
(610803584000, 1056189937254,
37030242384, 845898454698,
-2256138319442, 363547143644,
1100126026284, -313150978512,
1359463649048, 174256676348)

sage: g=[Ki//s for Ki in K]

sage: qlO]*E

6103803534000

sage: qlO]*K[1]-q[1]*K[O]
1056189937254

sage: qlO0]J*K[9]-q[9]*K[O]
174256676348

sage:

33

34
2009 DGHYV analysis:

can choose key sizes where
these lattice attacks fail.

2011 Coron—Mandal-Naccache-
Tibouchi: reduce key sizes

by modifying DGHV. “This
shows that fully homomorphic

encryption can be implemented
with a simple scheme.”

e.g. all attacks take >272 cycles
with public keys only 802MB.

2012 Chen—Nguyen: faster attack.
Need bigger DGHV/CMNT keys.

.LLL () [0]

534000, 1056189937254,
123384, 3845898454698,
3319442, 363547143644,
5026284, -313150978512,
3649048, 174256676348)
=[Ki//s for Ki in K]
[O] *E

34000
[0]*K[1]-q[1]*K[O]
037254
[0]*K[9]-q[9]*K[O]
(6348

33

2009 DGHV analysis:
can choose key sizes where

these lattice attacks fail.

2011 Coron—Mandal-Naccache-
Tibouchi: reduce key sizes

by modifying DGHV. “This
shows that fully homomorphic

encryption can be implemented
with a simple scheme.”

e.g. all attacks take >272 cycles
with public keys only 802MB.

2012 Chen—Nguyen: faster attack.

Need bigger DGHV/CMNT keys.

34

Big atta

1991 Ch
Pfitzmai

define C
for suita

Simple,

Very eas
finding (
computl

Typical |
Cis “pr
“cryptog
“security
mathem

056189937254,
58938454693,
363547143644,
-313150978512,
174256676348)

or Ki in K]

q[1]1*K[0]

q[9]1*K[0]

33

2009 DGHYV analysis:

can choose key sizes where
these lattice attacks fail.

2011 Coron—Mandal-Naccache-
Tibouchi: reduce key sizes

by modifying DGHV. “This
shows that fully homomorphic

encryption can be implemented
with a simple scheme.”

e.g. all attacks take >272 cycles
with public keys only 802MB.

2012 Chen—Nguyen: faster attack.
Need bigger DGHV/CMNT keys.

34

Big attack surface

1991 Chaum-van

Pfitzmann: choos
define C(x,y) =4
for suitable ranges

Simple, beautiful,
Very easy security
finding C collision
computing a discr:

Typical exaggerati
C is “provably sec
“cryptographically

“security follows f
mathematical proc

254,

644 ,
8512,
348)

33

2009 DGHV analysis:

can choose key sizes where
these lattice attacks fail.

2011 Coron—Mandal-Naccache-
Tibouchi: reduce key sizes

by modifying DGHV. “This
shows that fully homomorphic

encryption can be implemented
with a simple scheme.”

e.g. all attacks take >272 cycles
with public keys only 802MB.

2012 Chen—Nguyen: faster attack.

Need bigger DGHV/CMNT keys.

34

Big attack surfaces are dang

1991 Chaum—van Heijst—

Pfitzmann: choose p sensibl
define C(x, y) = 49" mod
for suitable ranges of x and

Simple, beautiful, structurec
Very easy security reduction
finding C collision implies

computing a discrete logarit

Typical exaggerations:
C is “provably secure”; C is
“cryptographically collision-1
“security follows from rigorc
mathematical proofs”.

34 35
2009 DGHV analysis: Big attack surfaces are dangerous

can choose key sizes where 1991 Chaum-van Heijst—

Pfitzmann: choose p sensibly:;
2011 Coron—Mandal-Naccache- define C(x,y) = 49" mod p
Tibouchi: reduce key sizes for suitable ranges of x and y.
by modifying DGHV. “This
shows that fully homomorphic

these lattice attacks fail.

Simple, beautiful, structured.
Very easy security reduction:

encryption can be implemented finding C collision implies

with a simple scheme.” . . .
computing a discrete logarithm.

e.g. all attacks take >272 cycles

Tvpical exaggerations:
with public keys only 802MB. P -

C is “provably secure™; C is
2012 Chen—Nguyen: faster attack. “cryptographically collision-free™
Need bigger DGHV/CMNT keys. “security follows from rigorous

mathematical proofs”.

;HV analysis:
bse key sizes where
tice attacks fail.

ron—Mandal-Naccache—
I: reduce key sizes
fying DGHV. “This

1at fully homomorphic
on can be implemented
imple scheme.”

ttacks take >272 cycles
lic keys only 802MB.

en—Nguyen: faster attack.

rger DGHV/CMNT keys.

34

35
Big attack surfaces are dangerous

1991 Chaum—van Heijst—
Ptitzmann: choose p sensibly:;
define C(x, y) = 49" mod p
for suitable ranges of x and y.

Simple, beautiful, structured.
Very easy security reduction:
finding C collision implies
computing a discrete logarithm.

Typical exaggerations:

C is “provably secure”; C is
“cryptographically collision-free™
“security follows from rigorous
mathematical proofs”.

Security
1922 Kr

1986 Co
Schroep
1993 Go
1993 Sc
1994 Sh
many su
from pec
pre-quar

C is ven
No matt
IS, obtal
“unstruc

function

SIS:
es where
ks fail.

al-Naccache—

Key sizes

V. “This
bomomorphic
implemented

me.

e >272 cycles
nly 802MB.

n: faster attack.

V/CMNT keys.

34

Big attack surfaces are dangerous

1991 Chaum—van Heijst—
Pfitzmann: choose p sensibly:;
define C(x,y) = 49" mod p
for suitable ranges of x and y.

Simple, beautiful, structured.

Very easy security reduction:

finding C collision implies

computing a discrete logarithm.

Typical exaggerations:

C is “provably secure™; C is

“cryptograp
“security fol

nically collision-free”;

ows from rigorous

mathematical proofs”.

35

Security losses in
1922 Kraitchik (in

1986 Coppersmith
Schroeppel (NFS
1993 Gordon (gen
1993 Schirokauer
1994 Shor (quantl
many subsequent
from people who ¢
pre-quantum secul

C is very bad cryp

No matter what u
IS, obtain better s¢
“unstructured” co
function designs s

“he—

1C
ted

icles
3.

yttack.
keys.

34

Big attack surfaces are dangerous

1991 Chaum—van Heijst—
Pfitzmann: choose p sensibly:;
define C(x, y) = 49" mod p
for suitable ranges of x and y.

Simple, beautiful, structured.
Very easy security reduction:
finding C collision implies
computing a discrete logarithm.

Typical exaggerations:

C is “provably secure”; C is
“cryptographically collision-free”
“security follows from rigorous
mathematical proofs”.

35

Security losses in C include

1922 Kraitchik (index calcul
1986 Coppersmith—Odlyzko-
Schroeppel (NFS predecessc
1993 Gordon (general DL N
1993 Schirokauer (faster NF
1994 Shor (quantum poly ti
many subsequent attack spe
from people who care about
pre-quantum security.

C is very bad cryptography.

No matter what user's cost
Is, obtain better security wit
“unstructured” compression:
function designs such as BL

Big attack surfaces are dangerous

1991 Chaum—van Heijst—
Pfitzmann: choose p sensibly:;
define C(x,y) = 49" mod p
for suitable ranges of x and y.

Simple, beautiful, structured.
Very easy security reduction:
finding C collision implies
computing a discrete logarithm.

Typical exaggerations:
C is “provably secure™; C is
“cryptographically collision-free™

“security follows from rigorous
mathematical proofs”.

35

36

Security losses in C include

1922 Kraitch

ik (index calculus);

1986 Coppersmith—Odlyzko—
Schroeppel (NFS predecessor);

1993 Gordon

(general DL NFS);

1993 Schirokauer (faster NFS);

1994 Shor (q

uantum poly time);

many subsequent attack speedups

from people who care about

pre-quantum

C is very bac

security.

cryptography.

No matter w

s, obtain better security with

nat user's cost limit

“unstructured” compression-

function designs such as BLAKE.

ck surfaces are dangerous

aum—van Heijst—

n: choose p sensibly:;
(x,y) =4%9Y mod p
ble ranges of x and y.

beautiful, structured.

y security reduction:

_ collision implies

ng a discrete logarithm.

exaggerations:

ovably secure”; C is
rraphically collision-free”;
/ follows from rigorous
atical proofs".

Security losses in C include

1922 Kraitchik (index calculus);
1986 Coppersmith—Odlyzko—
Schroeppel (NFS predecessor);
1993 Gordon (general DL NFS);
1993 Schirokauer (faster NFS);
1994 Shor (quantum poly time);

many subsequent attack speedups

from people who care about
pre-quantum security.

C is very bad cryptography.

No matter what user’'s cost
Is, obtain better security wit

“unstructured” compression-

Imit

N

function designs such as BLAKE.

36

For publ
Some m
seems tc
but purs
often le:

Pre-qual
simpler
suffered

than EC
attacks .

2013 Ba
Thomé:
break of

s are dangerous

Heljst—

> p sensibly:;
*9Y mod p
of x and y.

structured.
reduction:
implies

ote logarithm.

ons:
ure': C is
collision-free” :
‘Om rigorous

fs .

35

Security losses in C include
1922 Kraitchik (index calculus);
1986 Coppersmith—Odlyzko—
Schroeppel (NFS predecessor);
1993 Gordon (general DL NFS);
1993 Schirokauer (faster NFS);

1994 Shor (quantum poly time);

many subsequent attack speedups

from people who care about

pre-quantum security.

C is very bac

No matter w

s, obtain better security with

nat user’'s cost

cryptography.
imit

“unstructured” compression-

function designs such as BLAKE.

36

For public-key enc
Some mathematic
seems to be unavc
but pursuing simp
often leads to sect

Pre-quantum exan
simpler than ECD
suffered many mol

than ECDH. Stat:
attacks are very c

2013 Barbulescu—(
Thomé: pre-quant
break of small-cha

‘erous

hm.

35

36
Security losses in C include

1922 Kraitchik (index calculus);
1986 Coppersmith—Odlyzko—
Schroeppel (NFS predecessor);
1993 Gordon (general DL NFS);
1993 Schirokauer (faster NFS);
1994 Shor (quantum poly time);
many subsequent attack speedups
from people who care about
pre-quantum security.

cryptography.
No matter what user’'s cost

C is very bac

Imit

is, obtain better security with
“unstructured” compression-
function designs such as BLAKE.

For public-key encryption:
Some mathematical structut
seems to be unavoidable,
but pursuing simple structur
often leads to security disast

Pre-quantum example: DH
simpler than ECDH, but DF
suffered many more security
than ECDH. State-of-the-ar

attacks are very complicatec

2013 Barbulescu—Gaudry—Jc
Thomé: pre-quantum quasi-
break of small-characteristic

Security losses in C include

1922 Kraitchik (index calculus);
1986 Coppersmith—Odlyzko—
Schroeppel (NFS predecessor);
1993 Gordon (general DL NFS);
1993 Schirokauer (faster NFS);
1994 Shor (quantum poly time);
many subsequent attack speedups
from people who care about

pre-quantum security.

C is very bad cryptography.

No matter what user’'s cost

Imit

s, obtain better security with
“unstructured” compression-
function designs such as BLAKE.

36

37
For public-key encryption:

Some mathematical structure
seems to be unavoidable,

but pursuing simple structures
often leads to security disasters.

Pre-quantum example: DH is
simpler than ECDH, but DH has
suffered many more security losses

than ECDH. State-of-the-art DH
attacks are very complicated.

2013 Barbulescu—Gaudry—Joux—
Thomé: pre-quantum quasi-poly
break of small-characteristic DH.

losses in C include
aitchik (index calculus);
ppersmith—Odlyzko—

pel (NFS predecessor);

rdon (general DL NFS);
hirokauer (faster NFS);

or (quantum poly time);
bsequent attack speedups
ople who care about

tum security.

/ bad cryptography.

er what user’'s cost limit

n better security with

tured” compression-
designs such as BLAKE.

36

37
For public-key encryption:

Some mathematical structure
seems to be unavoidable,

but pursuing simple structures
often leads to security disasters.

Pre-quantum example: DH is
simpler than ECDH, but DH has
suffered many more security losses
than ECDH. State-of-the-art DH

attacks are very complicated.

2013 Barbulescu—Gaudry—Joux—
Thomé: pre-quantum quasi-poly
break of small-characteristic DH.

The stat
against
are muc
than the

Lattice-!
advertise
simple”,
“linear ¢
Attacks

For effic
Cryptosy
features
surface
rings an

C include

dex calculus);
—QOdlyzko—
predecessor);
eral DL NFS);
(faster NFS);
im poly time);
attack speedups
are about

Ity.

tography.
ser's cost limit

>curity with
mpression-
ich as BLAKE.

36

37
For public-key encryption:

Some mathematical structure
seems to be unavoidable,

but pursuing simple structures
often leads to security disasters.

Pre-quantum example: DH is
simpler than ECDH, but DH has
suffered many more security losses

than ECDH. State-of-the-art DH
attacks are very complicated.

2013 Barbulescu—Gaudry—Joux—
Thomé: pre-quantum quasi-poly
break of small-characteristic DH.

The state-of-the-a
against Cohen's ct
are much more co
than the cryptosy:s

Lattice-based cryp
advertised as "alg:
simple”, consisting
“linear operations
Attacks exploit thi

For efficiency, latt
cryptosystems usu
features that expa
surface even more
rings and decrypti

edups

Imit

AKE.

36

37
For public-key encryption:

Some mathematical structure
seems to be unavoidable,

but pursuing simple structures
often leads to security disasters.

Pre-quantum example: DH is
simpler than ECDH, but DH has
suffered many more security losses

than ECDH. State-of-the-art DH
attacks are very complicated.

2013 Barbulescu—Gaudry—Joux—
Thomé: pre-quantum quasi-poly
break of small-characteristic DH.

The state-of-the-art attacks
against Cohen’s cryptosystel
are much more complicated
than the cryptosystem is. S

Lattice-based cryptosystems
advertised as “algorithmicall
simple”, consisting mainly o
“linear operations on vector:
Attacks exploit this structur

For efficiency, lattice-based
cryptosystems usually have
features that expand the att
surface even more: e.g.,
rings and decryption failures

For public-key encryption:
Some mathematical structure
seems to be unavoidable,

but pursuing simple structures
often leads to security disasters.

Pre-quantum example: DH is
simpler than ECDH, but DH has
suffered many more security losses

than ECDH. State-of-the-art DH
attacks are very complicated.

2013 Barbulescu—Gaudry—Joux—
Thomé: pre-quantum quasi-poly
break of small-characteristic DH.

37

38
The state-of-the-art attacks

against Cohen’s cryptosystem
are much more complicated
than the cryptosystem is. Scary!

L attice-based cryptosystems are
advertised as “algorithmically
simple”, consisting mainly of
“linear operations on vectors' .
Attacks exploit this structure!

For efficiency, lattice-based
cryptosystems usually have
features that expand the attack
surface even more: e.g.,

rings and decryption failures.

