Lattice-based cryptography,
part 1: simplicity

D. J. Bernstein

University of lllinois at Chicago;
Ruhr University Bochum

2000 Cohen cryptosystem

Public key: vector of integers

Encryption:
1. Input message m € {0, 1}.

2. Generate rq, ..., ry €40, 1}
l.e. & = (r1 ..... I’/\/) - {0, 1}N.

(Cohen says pick “half of the

integers in the public key at
random’: | guess this means

Ne2Zand Y ri = N/2.)

3. Compute and send ciphertext
C=(-1)"(nKi+ -+ ryKpn).
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Encryption:
1. Input message m € {0, 1}.
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How can receiver decrypt?

Key generation:
Generate s € {1,...,Y};
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ui,...,Uu ,
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K; € (ui+sZ)N{-X,...,X}

Decryption:
m=0if Cmods<(s—1)/2;
otherwise m = 1.
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317213509 * 990371647

sage:



How can receiver decrypt?

Key generation:

Generate s € {1,...,Y};

u1,...,uNE{O,...,
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2N
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Decryption:

m=0ifCmods<(s—1)/2;

otherwise m = 1.
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Let's try this on the computer.

Debian: apt install sagemath
Fedora: dnf install sagemath
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sagecell.sagemath.org

Sage is Python 3
-+ many math libraries

+ a few syntax differences:

sage: 1076 # power, not xor
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sage: factor(314159265358979323)
317213509 * 990371647

sage:
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this on the computer.

apt 1nstall sagemath
dnf install sagemath
WWW.sagemath.org

e print (X) to see X):
1.sagemath.org

Python 3
math libraries
syntax differences:

0"6 # power, not xor

actor(314159265358979323)
09 * 990371647

For integers C, s with s > 0,
Sage's “Cls"” always produces
outputs between 0 and s — 1.

Matches standard math definition:

Cmods=C-—|C/s]s.

Warning: Typically

C < 0 produces C%s < 0

in lower-level languages, so
nonzero output leaks input sign.

Warning: For polynomials C,

Sage can make the same mistake.

sage: N:
sage: X:
sage: Y:
sage: Y
1048576
sage: s;
sage: S
359512
sage: u
sage: u
[14485,
10493,
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159265358979323)
71647

For integers C, s with s > 0,
Sage's “Cls"” always produces
outputs between 0 and s — 1.

Matches standard math definition:

Cmods=C-—|C/s]s.

Warning: Typically

C < 0 produces C%s < 0

in lower-level languages, so
nonzero output leaks input sign.

Warning: For polynomials C,

Sage can make the same mistake.

sage: N=10
sage: X=2"50
sage: Y=2"20
sage: Y
1048576

sage: s=randrang

sage: s
359512

sage: u=[randran
- (s-1)
..... for 1 1
sage: u

[14485, 7039, 69
10493, 17333, 1
8213, 6370]



er.

math
nath

V™

or

979323)

For integers C, s with s > 0,
Sage's “Cls"” always produces
outputs between 0 and s — 1.

Matches standard math definition:

Cmods=C-—|C/s]s.

Warning: Typically

C < 0 produces C%s < 0

in lower-level languages, so
nonzero output leaks input sign.

Warning: For polynomials C,

Sage can make the same mistake.

sage: N=10
sage: X=2750
sage: Y=2"20
sage: Y
1048576

sage: s=randrange(1l,Y+1)

sage: s

359512

sage: u=[randrange (

Cee (s-1)//(2*N)+1
- for i in range(N

sage: u

[14485, 7039, 6945, 1589C
10493, 17333, 1397, 8656
8213, 6370]



For integers C, s with s > 0,
Sage's “Cls"” always produces
outputs between 0 and s — 1.

Matches standard math definition:

Cmods=C-—|C/s]s.

Warning: Typically

C < 0 produces C%s < 0

in lower-level languages, so
nonzero output leaks Iinput sign.

Warning: For polynomials C,

Sage can make the same mistake.

sage: N=10
sage: X=2"50
sage: Y=2"20
sage: Y
1048576

sage: s=randrange(1l,Y+1)

sage: s

359512

sage: u=[randrange(

Cee (s-1)//(2*xN)+1)
- for i in range(N)]

sage: u

[14485, 7039, 6945, 15890,
10493, 17333, 1397, 8656,
8213, 6370]
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sage: N=10

sage: X=27"50

sage: Y=2"20

sage: Y

1048576

sage: s=randrange(1l,Y+1)

sage: s

359512

sage: u=[randrange (

- (s=1)//(2xN)+1)
- for i in range(N)]

sage: u

[14485, 7039, 6945, 15890,
10493, 17333, 1397, 8656,
8213, 6370]

sage: K
[870056
322006!
—-29476!
—66927!
528958:
426006
-64194
50154 3:
-58306:«
461093
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sage: N=10

sage: X=2"50

sage: Y=2"20

sage: Y

1048576

sage: s=randrange(1l,Y+1)

sage: s

359512

sage: u=[randrange(

Cee (s=1)//(2xN)+1)
- for i in range(N)]

sage: u

[14485, 7039, 6945, 15890,
10493, 17333, 1397, 8656,
8213, 6370]

sage: K=[ui+s*ra

e ceil(

sage: K

[870056918917829
822006576592695
—-29476554434581
-66927510008098
528958455221029
426006001074157
-64194017603053
501543495923784
-58306407539258
46109390243834]
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sage: N=10

sage: X=2750

sage: Y=2"20

sage: Y

1048576

sage: s=randrange(1l,Y+1)

sage: s

359512

sage: u=[randrange (

- (s=1)//(2xN)+1)
- for i in range(N)]

sage: u

[14485, 7039, 6945, 15890,
10493, 17333, 1397, 8656,
8213, 6370]

sage: K=[uit+s*randrange (
- ceil (- (X+ui)/s
- floor ((X-ui)/s
- for ui in ul
sage: K
[870056918917829,
322006576592695,
-2947655443453815,
-669275100080982,
528958455221029,
426006001074157,
-641940176080531,
5015434959237384,
-583064075392587,
46109390243834]



sage: N=10 6 sage: K=[ui+s*randrange (
sage: X=2"50 - ceil (- (X+ui)/s),
sage: Y=2720 Cee floor ((X-ui)/s)+1)
sage: Y Cee for ui in u]
1048576 sage: K
sage: s=randrange(1l,Y+1) [870056918917829,
sage: s 822006576592695,
359512 -294765544345815,
sage: u=[randrange( -669275100080982,

Co (s=1)//(2*N)+1) 528958455221029,

- for i in range(N)] 426006001074157,
sage: u -6419401760380531,

[14485, 7039, 6945, 15890, 501543495923784,

10493, 17333, 1397, 8656, -583064075392587,

8213, 6370] 46109390243834]




=250
=2"20

=randrange (1,Y+1)

=[randrange (

(s-1)//(2%N)+1)

for i in range(N)]

7039, 6945, 15890,
17333, 1397, 8656,
5370]

sage: K=[uit+s*randrange (

Ce ceil (- (X+ui)/s),
- floor ((X-ui)/s)+1)
- for ui in ul

sage: K

[870056918917829,
322006576592695,
-2947655443453815,
-669275100080982,
528958455221029,
426006001074157,
-641940176080531,
5015434959237384,
-583064075392587,
46109390243834]

sage: [
[14485,
10493,
3213, |
sage: u
[14485,
10493,
3213, |
sage: s
96821
sage: s
963821
sage: s,
179756

sage:



e(1,Y+1)

ge
// (2¥N)+1)
n range(N) ]

45, 15390,
397, 8656,

sage: K=[ui+s*randrange (

Ce ceil (- (X+ui)/s),
Cee floor ((X-ui)/s)+1)
Ceel for ui in ul

sage: K

[870056918917829,
322006576592695,
-294765544345815,
-669275100080982,
5238958455221029,
426006001074157,
-641940176080531,
501543495923734,
-533064075392537,
46109390243834]

sage: [KiJ/s for
[14485, 7039, 69
10493, 17333, 1
8213, 6370]

sage: u

[14485, 7039, 69
10493, 17333, 1
8213, 6370]

sage: sum(K)%s

96821

sage: sum(u)

96321

sage: s//2
179756

sage:



sage: K=[uit+s*randrange (

Ce ceil (- (X+ui)/s),
- floor ((X-ui)/s)+1)
- for ui in ul

sage: K

[870056918917829,
322006576592695,
-294765544345315,
-669275100080982,
528958455221029,
426006001074157,
-6419401760380531,
5015434959237384,
-583064075392587,
46109390243834]

sage: [KiY/s for Ki in K]
[14485, 7039, 6945, 1589C
10493, 17333, 1397, 8656
8213, 6370]

sage: u

[14485, 7039, 6945, 15890
10493, 17333, 1397, 8656
8213, 6370]

sage: sum(K)%s

96821

sage: sum(u)

96321

sage: s//2

179756

sage:



sage: K=[ui+s*randrange (

Ce ceil (- (X+ui)/s),
Cee floor ((X-ui)/s)+1)
Ceel for ui in ul

sage: K

[870056918917829,
322006576592695,
-294765544345815,
-669275100080982,
5238958455221029,
426006001074157,
-641940176080531,
501543495923734,
-533064075392537,
46109390243834]

sage: [KiY/s for Ki in K]
[14485, 7039, 6945, 15890,

10493, 17333,

8213, 6370]

sage: u

1397, 8656,

[14485, 7039, 6945, 15890,

10493, 17333,

8213, 6370]

sage: sum(K)%s

96821

sage: sum(u)
96321

sage: s//2
179756

sage:

1397, 8656,



=[ui+s*randrange(
ceil (- (X+ui)/s),
floor ((X-ui)/s)+1)

for ui in ul

018917829,
576592695,
544345815,
5100080982,
155221029,
001074157,
0176080531,
195923784,
1075392587,
00243834]

sage: [KiY/s for Ki in K]
[14485, 7039, 6945, 15890,
10493, 17333, 1397, 8656,
8213, 6370]

sage: u

[14485, 7039, 6945, 15890,
10493, 17333, 1397, 8656,
8213, 6370]

sage: sum(K)%s

96821

sage: sum(u)

96321

sage: s//2

179756

sage:

sage: C
-202215:
sage: C
47024

sage: m

sage: s



ndrange (
-(X+ui)/s),
((X-ui)/s)+1)

in ul

sage: [KiY/s for Ki in K]
[14485, 7039, 6945, 15890,

10493, 17333,

8213, 6370]

sage: u

1397, 8656,

[14485, 7039, 6945, 15890,

10493, 17333,

8213, 6370]

sage: sum(K)%s

96821

sage: sum(u)
96321

sage: s//2
179756

sage:

1397, 8656,

sage: m=randrang
sage: r=[randran
Cee for 1 1
sage: C=(-1) "mxs
- for 1 in
sage: C
—-202215856043576
sage: C/s

47024

sage: m

0

sage: sum(r[i]*u

e for 1



)+1)

sage: [KiY/s for Ki in K]
[14485, 7039, 6945, 15890,

10493, 17333,

8213, 6370]

sage: u

1397, 8656,

[14485, 7039, 6945, 15890,

10493, 17333,

8213, 6370]

sage: sum(K)%s

96821

sage: sum(u)
96321

sage: s//2
179756

sage:

1397, 8656,

sage: m=randrange(2)
sage: r=[randrange(2)
- for i in range(N
sage: C=(-1) m*sum(xr[i]*K
....: for i in range(N)
sage: C

—-202215856043576

sage: C/s

47024

sage: m

0

sage: sum(r[i]*ul[il

- for i in range(



sage: [KiY/s for Ki in K]
[14485, 7039, 6945, 15890,
10493, 17333, 1397, 8656,
8213, 6370]

sage: u

[14485, 7039, 6945, 15890,
10493, 17333, 1397, 8656,
8213, 6370]

sage: sum(K)%s

96821

sage: sum(u)

96321

sage: s//2

179756

sage:

sage: m=randrange (2)

sage: r=[randrange(2)

Cee for i in range(N)]
sage: C=(-1) m*sum(r[i]*K[i]
....: for i in range(N))
sage: C

—-202215856043576

sage: C/s

47024

sage: m

0

sage: sum(r[i]*ul[il

Cee for i in range(N))



Ki’hs for Ki in K]
7039, 6945, 15890,
17333, 1397, 8656,

5370]

7039, 6945, 15890,
17333, 1397, 8656,
5370]

um (K) %s

am (u)

//2

sage: m=randrange(2)

sage: r=[randrange(2)

Cee for i in range(N)]
sage: C=(-1) m*sum(r[i]*K[i]
....: for i in range(N))
sage: C

—-202215856043576

sage: C/s

47024

sage: m

0

sage: sum(r[i]*ul[il

Cee for i in range(N))

Some pr
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Ki in K]
45, 15390,
397, 8656,

45, 15890,
397, 8656,

sage: m=randrange (2)

sage: r=[randrange(2)

Cee for i in range(N)]
sage: C=(-1) m*sum(r[i]*K[i]
....: for i in range(N))
sage: C

—-202215856043576

sage: C/s

47024

sage: m

0

sage: sum(r[i]*ul[il

Cee for i in range(N))

Some problems wi

1. Functionality p
System can't encr
that have more th

2. Security proble
We want cryptosy
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(1E, 1Ko — oK1, ...) =
(Q1E,2CI1U2 — 2qou1, .. )

30

sage: V=matrix.identity(N)
sage: V=-K[0]*V

sage: Vtop=copy(K)

sage: Vtop[O]=E

sage: V[0]=Vtop

sage: qO0=V.LLL() [0][0]/E
sage: qO

596437375

sage: round(K[0]/q0)
9843373038997925

sage: s

984337308997925

sage:

31



ittacks on DGHV keys

= 2U; + 5q; ~ sq;.
s small: u; < E.
i —qiKj = 2qju; — 2q;u;.

1K21K31 7KN)1
—K1,0,...,0);
0,—Ki,...,0);

0,0, ,—%(1)

—ZVi + -+ ZVy.

ns g1Vi +---+gnWn =
Ko —qoKy,...) =

Uy — 2qou, .. .).

30

V=matrix.identity(N)
V=-K[0]*V

sage:
sage:
Vtop=copy (K)
Vtop[0]=E
V[0]=Vtop
q0=V.LLL() [0] [0]/E
sage: qO

596487875

sage: round(K[0]/q0)
984887308997925

sage:
sage:
sage:

sage:

sage: S
984887308997925

sage:

31

sage: V
(1024,
-11115.
794301
688178
742362
102334
-35716:
112142
-11096
—-23562.
sage: V
(0, -58
O, O, |

sage:



DGHV keys

59, =~ Sq;.
1 < E.
— 2qju,- — 2q,-uj.

30

sage: V=matrix.identity(N)
sage: V=-K[0]*V

sage: Vtop=copy(K)

sage: Vtopl[O]=E

sage: V[0]=Vtop

sage: qO0=V.LLL() [0][0]/E
sage: qO

596437375

sage: round(K[0]/q0)
9843373038997925

sage: s

984337308997925

sage:

31

sage: V[O]

(1024,
-11115391791007
794301459533783
638178021083749
742362470968200
102334582783153
-35716867939855
112142161911996
-11096748622762
-23562893773500

sage: V[1]

(0, -58747333805
o, 0, 0, 0, O,

sage:



2quﬁ

30

sage: V=matrix.identity(N)
sage: V=-K[0]*V

sage: Vtop=copy(K)

sage: Vtopl[O]=E

sage: V[0]=Vtop

sage: qO0=V.LLL()[0] [0]/E
sage: qO

596437375

sage: round(K[0]/q0)
98438373038997925

sage: s

9843837308997925

sage:

31

sage: V[O]

(1024,
-11115391791007200837703
794301459533783434896055
68817802108374958901751,
742362470968200823035396
10233458278315395150547¢
-35716867939855887673000
112142161911996460105144
-1109674862276222495587 1
—-235628937738500377052338

sage: VI[1]

(0, -5874733380586406626E
o, 0, 0, 0, 0, 0, 0, O)

sage:



sage: V=matrix.identity(N)
sage: V=-K[0]*V

sage: Vtop=copy(K)

sage: Vtopl[O]=E

sage: V[0]=Vtop

sage: qO0=V.LLL() [0][0]/E
sage: qO

596437375

sage: round(K[0]/q0)
9843373038997925

sage: s

984337308997925

sage:

31

sage: V[O]

(1024,
-1111539179100720083770339,
794301459533783434896055,
68817802108374958901751,
742362470968200823035396,
1023345827831539515054795,
-357168679398558876730006,
1121421619119964601051443,
-1109674862276222495587129,
-235628937785003770523381)

sage: V[1]

(0, -587473338058640662659869,
o, 0, 0, 0, 0, 0, 0, O)

sage:

32



=matrix.identity(N)
=-K[0] *V
top=copy (K)
top[0] =E

[0]=Vtop
0=V.LLL() [0] [0]/E

)

(5

ound (K [0] /q0)
08997925

08997925

31

sage: V[O]

(1024,
-1111539179100720083770339,
794301459533783434896055,
68817802108374958901751,
742362470968200823035396,
1023345827831539515054795,
-357168679398558876730006,
1121421619119964601051443,
-1109674862276222495587129,
-235628937785003770523381)

sage: VI[1]

(0, -587473338058640662659869,
o, 0, 0, 0, 0, 0, 0, O)

sage:

32

sage: V
(610803
370302
—-22561
110012
135946.
sage: Q
sage: q
6108035:
sage: q
1056189
sage: q
1742566

sage:



dentity (N)

K)

[0] [O]/E

31

sage: V[O]

(1024,
-1111539179100720083770339,
794301459533783434896055,
68817802108374958901751,
742362470968200823035396,
1023345827831539515054795,
-357168679398558876730006,
1121421619119964601051443,
-1109674862276222495587129,
-235628937785003770523381)

sage: V[1]

(0, -587473338058640662659869,
o, 0, 0, 0, 0, 0, 0, O)

sage:

32

sage: V.LLL(Q) [0]
(610803584000, 1
37030242334, 84
—-225613319442,
1100126026284,
1359463649043,
sage: q=[Ki//s £
sage: qlO]*E
610803584000
sage: q[O]*K[1]-
1056189937254
sage: qlO0]*K[9]-
174256676348

sage:



31

sage: V[O]

(1024,
-1111539179100720083770339,
794301459533783434896055,
68817802108374958901751,
742362470968200823035396,
1023345827831539515054795,
-357168679398558876730006,
1121421619119964601051443,
-1109674862276222495587129,
-235628937785003770523381)

sage: VI[1]

(0, -587473338058640662659869,
o, 0, 0, 0, O, 0, 0, O)

sage:

32

sage: V.LLLQ) [0]
(610803584000, 1056189937
37030242384, 84589845469
—-225618319442, 363547143
1100126026284, -31315097
1359463649048, 174256676

sage: q=[Ki//s for Ki in

sage: qlO]x*E

610803584000

sage: qlO]*K[1]-q[1]*K[O]

1056189937254

sage: qlO0]J*K[9]-q[9]*K[0O]

174256676348

sage:



sage: V[O]

(1024,
-1111539179100720083770339,
794301459533783434896055,
68817802108374958901751,
742362470968200823035396,
1023345827831539515054795,
-357168679398558876730006,
1121421619119964601051443,
-1109674862276222495587129,
-235628937785003770523381)

sage: V[1]

(0, -587473338058640662659869,
o, 0, 0, 0, 0, 0, 0, O)

sage:

32

33
sage: V.LLL(Q) [0]

(610803584000, 1056189937254,
37030242384, 845898454693,
—-2205618319442, 363547143644,
1100126026284, -313150978512,
1359463649048, 174256676348)

sage: g=[Ki//s for Ki in K]

sage: qlO]*E

610803584000

sage: qlO]*K[1]-q[1]*K[O]

1056189937254

sage: qlO0]J*K[9]-q[9]*K[O]

174256676343

sage:



[O]

39179100720083770339,
159533783434896055,
02108374958901751,
170963200823035396,
827331539515054795,
3679398558876730006,
1619119964601051443,
(4862276222495587129,
39037785003770523381)
[1]
r473338058640662659869,
0, 0, 0, 0, 0, 0)

32

sage: V.LLL(Q) [0]
(610803584000, 1056189937254,
37030242384, 845898454698,
-225618319442, 363547143644,
1100126026284, -313150978512,
1359463649048, 174256676348)

sage: q=[Ki//s for Ki in K]

sage: qlO]x*E

610803534000

sage: qlO]*K[1]-q[1]*K[O]
1056189937254

sage: qlO0]J*K[9]-q[9]*K[O]
174256676348

sage:

33
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20083770339,
434896055,
58901751,
323035396,
9515054795,
3876730006,
4601051443,
22495587129,
3770523381)

3640662659869,
0, 0, 0)

32

sage: V.LLL(Q) [0]
(610803584000, 1056189937254,
37030242384, 845898454698,
-225618319442, 363547143644,
1100126026284, -313150978512,
1359463649048, 174256676348)

sage: g=[Ki//s for Ki in K]

sage: qlO]*E

6103803534000

sage: qlO]*K[1]-q[1]*K[O]
1056189937254

sage: qlO0]J*K[9]-q[9]*K[O]
174256676348

sage:
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9869,

32

sage: V.LLL(Q) [0]
(610803584000, 1056189937254,
37030242384, 845898454698,
-2256138319442, 363547143644,
1100126026284, -313150978512,
1359463649048, 174256676348)

sage: q=[Ki//s for Ki in K]

sage: qlO]x*E

610803534000

sage: qlO]*K[1]-q[1]*K[O]
1056189937254

sage: qlO0]J*K[9]-q[9]*K[0]
174256676348

sage:
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sage: V.LLL(Q) [0]
(610803584000, 1056189937254,
37030242384, 845898454698,
-2256138319442, 363547143644,
1100126026284, -313150978512,
1359463649048, 174256676348)

sage: g=[Ki//s for Ki in K]

sage: qlO]*E

6103803534000

sage: qlO]*K[1]-q[1]*K[O]
1056189937254

sage: qlO0]J*K[9]-q[9]*K[O]
174256676348

sage:

33

34
2009 DGHYV analysis:

can choose key sizes where
these lattice attacks fail.

2011 Coron—Mandal-Naccache-
Tibouchi: reduce key sizes

by modifying DGHV. “This
shows that fully homomorphic

encryption can be implemented
with a simple scheme.”

e.g. all attacks take >272 cycles
with public keys only 802MB.

2012 Chen—Nguyen: faster attack.
Need bigger DGHV/CMNT keys.



.LLL () [0]

534000, 1056189937254,
123384, 3845898454698,
3319442, 363547143644,
5026284, -313150978512,
3649048, 174256676348)
=[Ki//s for Ki in K]
[O] *E

34000
[0]*K[1]-q[1]*K[O]
037254
[0]*K[9]-q[9]*K[O]
(6348

33

2009 DGHV analysis:
can choose key sizes where

these lattice attacks fail.

2011 Coron—Mandal-Naccache-
Tibouchi: reduce key sizes

by modifying DGHV. “This
shows that fully homomorphic

encryption can be implemented
with a simple scheme.”

e.g. all attacks take >272 cycles
with public keys only 802MB.

2012 Chen—Nguyen: faster attack.

Need bigger DGHV/CMNT keys.
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056189937254,
58938454693,
363547143644,
-313150978512,
174256676348)

or Ki in K]

q[1]1*K[0]

q[9]1*K[0]

33

2009 DGHYV analysis:

can choose key sizes where
these lattice attacks fail.

2011 Coron—Mandal-Naccache-
Tibouchi: reduce key sizes

by modifying DGHV. “This
shows that fully homomorphic

encryption can be implemented
with a simple scheme.”

e.g. all attacks take >272 cycles
with public keys only 802MB.

2012 Chen—Nguyen: faster attack.
Need bigger DGHV/CMNT keys.
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2009 DGHV analysis:

can choose key sizes where
these lattice attacks fail.

2011 Coron—Mandal-Naccache-
Tibouchi: reduce key sizes

by modifying DGHV. “This
shows that fully homomorphic

encryption can be implemented
with a simple scheme.”

e.g. all attacks take >272 cycles
with public keys only 802MB.

2012 Chen—Nguyen: faster attack.

Need bigger DGHV/CMNT keys.

34

Big attack surfaces are dang

1991 Chaum—van Heijst—

Pfitzmann: choose p sensibl
define C(x, y) = 49" mod
for suitable ranges of x and

Simple, beautiful, structurec
Very easy security reduction
finding C collision implies

computing a discrete logarit

Typical exaggerations:
C is “provably secure”; C is
“cryptographically collision-1
“security follows from rigorc
mathematical proofs”.



34 35
2009 DGHV analysis: Big attack surfaces are dangerous

can choose key sizes where 1991 Chaum-van Heijst—

Pfitzmann: choose p sensibly:;
2011 Coron—Mandal-Naccache- define C(x,y) = 49" mod p
Tibouchi: reduce key sizes for suitable ranges of x and y.
by modifying DGHV. “This
shows that fully homomorphic

these lattice attacks fail.

Simple, beautiful, structured.
Very easy security reduction:

encryption can be implemented finding C collision implies

with a simple scheme.” . . .
computing a discrete logarithm.

e.g. all attacks take >272 cycles

Tvpical exaggerations:
with public keys only 802MB. P -

C is “provably secure™; C is
2012 Chen—Nguyen: faster attack. “cryptographically collision-free™
Need bigger DGHV/CMNT keys. “security follows from rigorous

mathematical proofs”.
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Big attack surfaces are dangerous

1991 Chaum—van Heijst—
Ptitzmann: choose p sensibly:;
define C(x, y) = 49" mod p
for suitable ranges of x and y.

Simple, beautiful, structured.
Very easy security reduction:
finding C collision implies
computing a discrete logarithm.

Typical exaggerations:

C is “provably secure”; C is
“cryptographically collision-free™
“security follows from rigorous
mathematical proofs”.
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Big attack surfaces are dangerous

1991 Chaum—van Heijst—
Pfitzmann: choose p sensibly:;
define C(x,y) = 49" mod p
for suitable ranges of x and y.

Simple, beautiful, structured.

Very easy security reduction:

finding C collision implies

computing a discrete logarithm.

Typical exaggerations:

C is “provably secure™; C is

“cryptograp
“security fol

nically collision-free”;
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Big attack surfaces are dangerous

1991 Chaum—van Heijst—
Pfitzmann: choose p sensibly:;
define C(x, y) = 49" mod p
for suitable ranges of x and y.

Simple, beautiful, structured.
Very easy security reduction:
finding C collision implies
computing a discrete logarithm.

Typical exaggerations:

C is “provably secure”; C is
“cryptographically collision-free”
“security follows from rigorous
mathematical proofs”.
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Big attack surfaces are dangerous

1991 Chaum—van Heijst—
Pfitzmann: choose p sensibly:;
define C(x,y) = 49" mod p
for suitable ranges of x and y.

Simple, beautiful, structured.
Very easy security reduction:
finding C collision implies
computing a discrete logarithm.

Typical exaggerations:
C is “provably secure™; C is
“cryptographically collision-free™

“security follows from rigorous
mathematical proofs”.

35
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Security losses in C include

1922 Kraitch

ik (index calculus);

1986 Coppersmith—Odlyzko—
Schroeppel (NFS predecessor);

1993 Gordon

(general DL NFS);

1993 Schirokauer (faster NFS);

1994 Shor (q
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many subsequent attack speedups

from people who care about

pre-quantum
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Security losses in C include

1922 Kraitchik (index calculus);
1986 Coppersmith—Odlyzko—
Schroeppel (NFS predecessor);
1993 Gordon (general DL NFS);
1993 Schirokauer (faster NFS);
1994 Shor (quantum poly time);

many subsequent attack speedups

from people who care about
pre-quantum security.
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Security losses in C include
1922 Kraitchik (index calculus);
1986 Coppersmith—Odlyzko—
Schroeppel (NFS predecessor);
1993 Gordon (general DL NFS);
1993 Schirokauer (faster NFS);

1994 Shor (quantum poly time);

many subsequent attack speedups

from people who care about

pre-quantum security.
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Security losses in C include

1922 Kraitchik (index calculus);
1986 Coppersmith—Odlyzko—
Schroeppel (NFS predecessor);
1993 Gordon (general DL NFS);
1993 Schirokauer (faster NFS);
1994 Shor (quantum poly time);
many subsequent attack speedups
from people who care about
pre-quantum security.

cryptography.
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Security losses in C include

1922 Kraitchik (index calculus);
1986 Coppersmith—Odlyzko—
Schroeppel (NFS predecessor);
1993 Gordon (general DL NFS);
1993 Schirokauer (faster NFS);
1994 Shor (quantum poly time);
many subsequent attack speedups
from people who care about

pre-quantum security.

C is very bad cryptography.

No matter what user’'s cost

Imit

s, obtain better security with
“unstructured” compression-
function designs such as BLAKE.
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For public-key encryption:

Some mathematical structure
seems to be unavoidable,

but pursuing simple structures
often leads to security disasters.

Pre-quantum example: DH is
simpler than ECDH, but DH has
suffered many more security losses

than ECDH. State-of-the-art DH
attacks are very complicated.

2013 Barbulescu—Gaudry—Joux—
Thomé: pre-quantum quasi-poly
break of small-characteristic DH.
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For public-key encryption:

Some mathematical structure
seems to be unavoidable,

but pursuing simple structures
often leads to security disasters.

Pre-quantum example: DH is
simpler than ECDH, but DH has
suffered many more security losses
than ECDH. State-of-the-art DH

attacks are very complicated.
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For public-key encryption:

Some mathematical structure
seems to be unavoidable,

but pursuing simple structures
often leads to security disasters.

Pre-quantum example: DH is
simpler than ECDH, but DH has
suffered many more security losses

than ECDH. State-of-the-art DH
attacks are very complicated.

2013 Barbulescu—Gaudry—Joux—
Thomé: pre-quantum quasi-poly
break of small-characteristic DH.
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For public-key encryption:

Some mathematical structure
seems to be unavoidable,

but pursuing simple structures
often leads to security disasters.

Pre-quantum example: DH is
simpler than ECDH, but DH has
suffered many more security losses

than ECDH. State-of-the-art DH
attacks are very complicated.
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The state-of-the-art attacks

against Cohen’s cryptosystem
are much more complicated
than the cryptosystem is. Scary!

L attice-based cryptosystems are
advertised as “algorithmically
simple”, consisting mainly of
“linear operations on vectors' .
Attacks exploit this structure!

For efficiency, lattice-based
cryptosystems usually have
features that expand the attack
surface even more: e.g.,

rings and decryption failures.



