Lattice-based cryptography, part 1: simplicity

D. J. Bernstein

University of Illinois at Chicago; Ruhr University Bochum

2000 Cohen cryptosystem

Public key: vector of integers $K = (K_1, ..., K_N) \in \{-X, ..., X\}^N$.

Encryption:

- 1. Input message $m \in \{0, 1\}$.
- 2. Generate $r_1, \ldots, r_N \in \{0, 1\}$. i.e. $r = (r_1, \ldots, r_N) \in \{0, 1\}^N$.

(Cohen says pick "half of the integers in the public key at random": I guess this means $N \in 2\mathbf{Z}$ and $\sum r_i = N/2$.)

3. Compute and send ciphertext $C = (-1)^m (r_1 K_1 + \cdots + r_N K_N).$

based cryptography, simplicity

rnstein

ty of Illinois at Chicago; liversity Bochum

2000 Cohen cryptosystem

Public key: vector of integers $K = (K_1, ..., K_N) \in \{-X, ..., X\}^N$.

Encryption:

- 1. Input message $m \in \{0, 1\}$.
- 2. Generate $r_1, \ldots, r_N \in \{0, 1\}$. i.e. $r = (r_1, \ldots, r_N) \in \{0, 1\}^N$.

(Cohen says pick "half of the integers in the public key at random": I guess this means $N \in 2\mathbf{Z}$ and $\sum r_i = N/2$.)

3. Compute and send ciphertext $C = (-1)^m (r_1 K_1 + \cdots + r_N K_N).$

How car

Key gen Generate

 u_1,\ldots,u

$$K_i \in (u_i)$$

Decryption m = 0 if otherwise

Why thi K_i mod

$$r_1K_1+\cdot$$

(Be care

is at Chicago;

ochum

2000 Cohen cryptosystem

Public key: vector of integers $K = (K_1, \dots, K_N) \in \{-X, \dots, X\}^N$.

Encryption:

- 1. Input message $m \in \{0, 1\}$.
- 2. Generate $r_1, \ldots, r_N \in \{0, 1\}$.

i.e.
$$r = (r_1, \dots, r_N) \in \{0, 1\}^N$$
.

(Cohen says pick "half of the integers in the public key at random": I guess this means $N \in 2\mathbb{Z} \text{ and } \sum r_i = N/2.$

3. Compute and send ciphertext $C = (-1)^m (r_1 K_1 + \cdots + r_N K_N).$ How can receiver

Key generation:

Generate $s \in \{1, ...\}$

$$u_1,\ldots,u_N\in\bigg\{0,\ldots$$

$$K_i \in (u_i + s\mathbf{Z}) \cap \mathbf{Z}$$

Decryption:

$$m = 0$$
 if $C \mod s$ otherwise $m = 1$.

Why this works:

$$K_i \mod s = u_i \leq 1$$

$$r_1K_1+\cdots+r_NK_N$$

(Be careful! What

ago;

2000 Cohen cryptosystem

Public key: vector of integers

$$K = (K_1, \ldots, K_N) \in \{-X, \ldots, X\}^N$$
.

Encryption:

- 1. Input message $m \in \{0, 1\}$.
- 2. Generate $r_1, \ldots, r_N \in \{0, 1\}$.

i.e.
$$r = (r_1, \dots, r_N) \in \{0, 1\}^N$$
.

(Cohen says pick "half of the integers in the public key at random": I guess this means $N \in 2\mathbb{Z}$ and $\sum r_i = N/2$.)

3. Compute and send ciphertext $C = (-1)^m (r_1 K_1 + \cdots + r_N K_N).$ How can receiver decrypt?

Key generation:

Generate $s \in \{1, \dots, Y\}$;

$$u_1,\ldots,u_N\in\left\{0,\ldots,\left\lfloor\frac{s-1}{2N}\right\rfloor\right\}$$

$$K_i \in (u_i + s\mathbf{Z}) \cap \{-X, \ldots, x\}$$

Decryption:

$$m = 0$$
 if $C \mod s \le (s - 1)$
otherwise $m = 1$.

Why this works:

$$K_i \mod s = u_i \le (s - 1)/2I$$

 $r_1 K_1 + \dots + r_N K_N \mod s < 1$

(Be careful! What if all $r_i =$

2000 Cohen cryptosystem

Public key: vector of integers $K = (K_1, ..., K_N) \in \{-X, ..., X\}^N$.

Encryption:

- 1. Input message $m \in \{0, 1\}$.
- 2. Generate $r_1, \ldots, r_N \in \{0, 1\}$. i.e. $r = (r_1, \ldots, r_N) \in \{0, 1\}^N$.

(Cohen says pick "half of the integers in the public key at random": I guess this means $N \in 2\mathbf{Z}$ and $\sum r_i = N/2$.)

3. Compute and send ciphertext $C = (-1)^m (r_1 K_1 + \cdots + r_N K_N).$

How can receiver decrypt?

Key generation:

Generate $s \in \{1, \dots, Y\}$;

$$u_1, \ldots, u_N \in \left\{0, \ldots, \left\lfloor \frac{s-1}{2N} \right\rfloor\right\};$$
 $K_i \in (u_i + s\mathbf{Z}) \cap \{-X, \ldots, X\}.$

Decryption:

m = 0 if $C \mod s \le (s - 1)/2$; otherwise m = 1.

Why this works:

$$K_i \mod s = u_i \le (s-1)/2N$$
 so $r_1K_1 + \dots + r_NK_N \mod s \le \frac{s-1}{2}$.

(Be careful! What if all $r_i = 0$?)

ey: vector of integers

$$\{-X, \dots, K_N\} \in \{-X, \dots, X\}^N$$
.

on:

message $m \in \{0, 1\}$.

rate $r_1, ..., r_N \in \{0, 1\}$.

$$(r_1,\ldots,r_N) \in \{0,1\}^N$$
.

says pick "half of the

in the public key at

: I guess this means

and
$$\sum r_i = N/2$$
.)

oute and send ciphertext

$$(r_1K_1+\cdots+r_NK_N).$$

How can receiver decrypt?

Key generation:

Generate $s \in \{1, \dots, Y\}$;

$$u_1,\ldots,u_N\in\left\{0,\ldots,\left\lfloor\frac{s-1}{2N}\right\rfloor\right\};$$

$$K_i \in (u_i + s\mathbf{Z}) \cap \{-X, \ldots, X\}.$$

Decryption:

$$m = 0$$
 if $C \mod s \leq (s-1)/2$;

otherwise m = 1.

Why this works:

$$K_i \mod s = u_i \le (s-1)/2N$$
 so $r_1 K_1 + \dots + r_N K_N \mod s \le \frac{s-1}{2}$.

(Be careful! What if all $r_i = 0$?)

Let's try

Debian:

Fedora:

Source:

Web (us

Sage is

+ many

+ a few

sage: 1

1000000

sage: f

3172135

sage:

$$m \in \{0, 1\}.$$

$$(r_N \in \{0, 1\}.)$$

"half of the olic key at this means

= N/2.)

end ciphertext $+\cdots + r_N K_N$). How can receiver decrypt?

Key generation:

Generate $s \in \{1, \dots, Y\}$;

$$u_1,\ldots,u_N\in\left\{0,\ldots,\left\lfloor\frac{s-1}{2N}\right\rfloor\right\};$$

$$K_i \in (u_i + s\mathbf{Z}) \cap \{-X, \ldots, X\}.$$

Decryption:

$$m = 0$$
 if $C \mod s \le (s - 1)/2$; otherwise $m = 1$.

Why this works:

$$K_i \mod s = u_i \le (s-1)/2N$$
 so $r_1K_1 + \dots + r_NK_N \mod s \le \frac{s-1}{2}$.

(Be careful! What if all $r_i = 0$?)

Let's try this on the

Debian: apt inst Fedora: dnf inst

Web (use print()

Source: www.sage

sagecell.sagema

Sage is Python 3 + many math libr

+ a few syntax di

sage: 10^6 # pow 1000000

sage: factor(314

317213509 * 9903

sage:

3

How can receiver decrypt?

Key generation:

Generate $s \in \{1, \dots, Y\}$;

$$u_1,\ldots,u_N\in\left\{0,\ldots,\left\lfloor\frac{s-1}{2N}\right\rfloor\right\};$$

$$K_i \in (u_i + s\mathbf{Z}) \cap \{-X, \ldots, X\}.$$

Decryption:

m = 0 if $C \mod s \le (s - 1)/2$; otherwise m = 1.

Why this works:

$$K_i \mod s = u_i \le (s-1)/2N$$
 so $r_1K_1 + \dots + r_NK_N \mod s \le \frac{s-1}{2}$.

(Be careful! What if all $r_i = 0$?)

Let's try this on the comput

Debian: apt install sage:
Fedora: dnf install sage:
Source: www.sagemath.org

Web (use print(X) to see

sagecell.sagemath.org

Sage is Python 3

- + many math libraries
- + a few syntax differences:

sage: 10⁶ # power, not x

1000000 gagget factor(21/1502652

sage: factor(314159265358

317213509 * 990371647

sage:

 $\ldots, X\}^N$.

}.

1}. .N

e

S

rtext

 K_N).

How can receiver decrypt?

Key generation:

Generate $s \in \{1, ..., Y\}$;

$$u_1,\ldots,u_N\in\left\{0,\ldots,\left\lfloor\frac{s-1}{2N}\right\rfloor\right\};$$

$$K_i \in (u_i + s\mathbf{Z}) \cap \{-X, \ldots, X\}.$$

Decryption:

m = 0 if $C \mod s \le (s - 1)/2$; otherwise m = 1.

Why this works:

$$K_i \mod s = u_i \le (s-1)/2N$$
 so $r_1K_1 + \dots + r_NK_N \mod s \le \frac{s-1}{2}$.

(Be careful! What if all $r_i = 0$?)

Let's try this on the computer.

Debian: apt install sagemath

Fedora: dnf install sagemath

Source: www.sagemath.org

Web (use print(X) to see X):

sagecell.sagemath.org

Sage is Python 3

- + many math libraries
- + a few syntax differences:

sage: 10⁶ # power, not xor

1000000

sage: factor(314159265358979323)

317213509 * 990371647

sage:

receiver decrypt?

eration:

$$s \in \{1, ..., Y\};$$

$$u_{\mathcal{N}} \in \left\{0,\ldots,\left\lfloor \frac{s-1}{2\mathcal{N}} \right\rfloor\right\};$$

$$(+s\mathbf{Z})\cap\{-X,\ldots,X\}.$$

on:

$$f C \mod s \leq (s-1)/2;$$

e m = 1.

s works:

$$s=u_i \leq (s-1)/2N$$
 so

$$s = u_i \le (s-1)/2N$$
 so $\cdots + r_N K_N \mod s \le \frac{s-1}{2}$.

ful! What if all $r_i = 0$?)

Let's try this on the computer.

Debian: apt install sagemath

Fedora: dnf install sagemath

Source: www.sagemath.org

Web (use print(X) to see X):

sagecell.sagemath.org

Sage is Python 3

+ many math libraries

+ a few syntax differences:

sage: 10^6 # power, not xor

1000000

sage: factor(314159265358979323)

317213509 * 990371647

sage:

For integ Sage's " outputs

Matches C mod s

Warning

C < 0 prin lower-

Warning Sage car

nonzero

$$\{x_1, x_2, \dots, x_n\};$$
 $\{x_1, x_2, \dots, x_n\}.$

$$\leq (s-1)/2;$$

$$(s-1)/2N$$
 so $mod s \leq \frac{s-1}{2}$.

: if all $r_i = 0$?)

Let's try this on the computer.

Debian: apt install sagemath

Fedora: dnf install sagemath

Source: www.sagemath.org

Web (use print(X) to see X):

sagecell.sagemath.org

Sage is Python 3

+ many math libraries

+ a few syntax differences:

sage: 10^6 # power, not xor 1000000

sage: factor(314159265358979323)

317213509 * 990371647

sage:

For integers C, s v Sage's "C%s" alwa outputs between C

Matches standard $C \mod s = C - |C|$

Warning: Typically C < 0 produces C^{0} in lower-level lang

Warning: For poly Sage can make the

nonzero output lea

 $X\}$.

V so

= 0?)

Let's try this on the computer.

Debian: apt install sagemath

Fedora: dnf install sagemath

Source: www.sagemath.org

Web (use print(X) to see X):

sagecell.sagemath.org

Sage is Python 3

+ many math libraries

+ a few syntax differences:

sage: 10^6 # power, not xor

1000000

sage: factor(314159265358979323)

317213509 * 990371647

sage:

For integers C, s with s > 0Sage's "C%s" always production outputs between 0 and s —

Matches standard math defi $C \mod s = C - |C/s|s$.

Warning: Typically C < 0 produces C%s < 0 in lower-level languages, so nonzero output leaks input s

Warning: For polynomials C Sage can make the same mi Let's try this on the computer.

Debian: apt install sagemath

Fedora: dnf install sagemath

Source: www.sagemath.org

Web (use print(X) to see X):

sagecell.sagemath.org

Sage is Python 3

+ many math libraries

+ a few syntax differences:

sage: 10^6 # power, not xor

1000000

sage: factor(314159265358979323)

317213509 * 990371647

sage:

For integers C, s with s > 0, Sage's "C%s" always produces outputs between 0 and s - 1.

Matches standard math definition: $C \mod s = C - |C/s|s$.

Warning: Typically C < 0 produces C%s < 0 in lower-level languages, so nonzero output leaks input sign.

Warning: For polynomials C, Sage can make the same mistake.

sage: Na

sage: X

sage: Y

sage: Y

1048576

sage: s

sage: s

359512

sage: u

.

sage: u

[14485,

10493,

8213,

this on the computer. apt install sagemath dnf install sagemath www.sagemath.org se print(X) to see X): Ll.sagemath.org Python 3 math libraries syntax differences: 0^6 # power, not xor actor(314159265358979323) 09 * 990371647

For integers C, s with s > 0, Sage's "C%s" always produces outputs between 0 and s-1. Matches standard math definition: $C \mod s = C - |C/s|s$. Warning: Typically C < 0 produces C%s < 0in lower-level languages, so nonzero output leaks input sign. Warning: For polynomials C, Sage can make the same mistake.

all sagemath all sagemath

emath.org

X) to see X):

ath.org

aries

fferences:

er, not xor

159265358979323)

71647

For integers C, s with s > 0, Sage's "C%s" always produces outputs between 0 and s-1.

Matches standard math definition: $C \mod s = C - |C/s|s$.

Warning: Typically C < 0 produces C%s < 0in lower-level languages, so nonzero output leaks input sign.

Warning: For polynomials C, Sage can make the same mistake. sage: N=10

sage: X=2^50

sage: Y=2^20

sage: Y

1048576

sage: s=randrang

sage: s

359512

sage: u=[randran

(s-1).

....: for i i

sage: u

[14485, 7039, 69

10493, 17333, 1

8213, 6370]

For integers C, s with s > 0, Sage's "C%s" always produces outputs between 0 and s-1.

Matches standard math definition: $C \mod s = C - |C/s|s$.

Warning: Typically C < 0 produces C%s < 0in lower-level languages, so nonzero output leaks input sign.

Warning: For polynomials C, Sage can make the same mistake.

```
sage: N=10
```

$$(s-1)//(2*N)+1$$

For integers C, s with s > 0, Sage's "C%s" always produces outputs between 0 and s-1.

Matches standard math definition: $C \mod s = C - |C/s|s$.

Warning: Typically C < 0 produces C%s < 0 in lower-level languages, so nonzero output leaks input sign.

Warning: For polynomials C, Sage can make the same mistake.

```
sage: N=10
sage: X=2^50
sage: Y=2^20
sage: Y
1048576
sage: s=randrange(1,Y+1)
sage: s
359512
sage: u=[randrange(
...: (s-1)//(2*N)+1)
...: for i in range(N)]
sage: u
[14485, 7039, 6945, 15890,
 10493, 17333, 1397, 8656,
```

8213, 6370]

5

gers C, s with s > 0, C%s" always produces

between 0 and s-1.

standard math definition:

$$s = C - \lfloor C/s \rfloor s$$
.

: Typically

roduces C%s < 0

level languages, so

output leaks input sign.

: For polynomials C, n make the same mistake.

```
sage: N=10
sage: X=2^50
sage: Y=2^20
sage: Y
1048576
sage: s=randrange(1,Y+1)
sage: s
359512
sage: u=[randrange(
...: (s-1)//(2*N)+1)
...: for i in range(N)]
sage: u
[14485, 7039, 6945, 15890,
```

10493, 17333, 1397, 8656,

8213, 6370]

sage: Ka

.

sage: K

[870056

822006

-29476

-66927

528958

426006

-64194

501543

-58306

461093

[14485, 7039, 6945, 15890,

10493, 17333, 1397, 8656,

8213, 6370]

ceil(

floor

501543495923784

-58306407539258

46109390243834]

vith s > 0,

ys produces

and s-1.

 $\mathbb{Z}/s|s$.

 $\sqrt{s} < 0$

uages, so

nomials C,

aks input sign.

e same mistake.

math definition:

```
5
          sage: N=10
                                              sage: K=[ui+s*randrange(
                                                         ceil(-(X+ui)/s
          sage: X=2^50
                                                         floor((X-ui)/s
          sage: Y=2^20
                                                       for ui in u]
          sage: Y
nition:
          1048576
                                              sage: K
          sage: s=randrange(1,Y+1)
                                               [870056918917829,
                                               822006576592695,
          sage: s
          359512
                                               -294765544345815,
          sage: u=[randrange(
                                               -669275100080982,
          ...: (s-1)//(2*N)+1)
                                               528958455221029,
          ...: for i in range(N)]
                                               426006001074157,
                                               -641940176080531,
          sage: u
stake.
          [14485, 7039, 6945, 15890,
                                               501543495923784,
           10493, 17333, 1397, 8656,
                                               -583064075392587,
           8213, 6370]
                                               46109390243834]
```

es

sign.

```
sage: N=10
sage: X=2^50
sage: Y=2^20
sage: Y
1048576
sage: s=randrange(1,Y+1)
sage: s
359512
sage: u=[randrange(
...: (s-1)//(2*N)+1)
...: for i in range(N)]
sage: u
[14485, 7039, 6945, 15890,
 10493, 17333, 1397, 8656,
```

8213, 6370]

```
sage: K=[ui+s*randrange(
\ldots: ceil(-(X+ui)/s),
...: floor((X-ui)/s)+1)
...: for ui in u]
sage: K
[870056918917829,
822006576592695,
-294765544345815,
 -669275100080982,
528958455221029,
426006001074157,
 -641940176080531,
 501543495923784,
 -583064075392587,
46109390243834]
```

```
sage: K=[ui+s*randrange(
=10
                                                                sage: [
=2^50
                            \ldots: ceil(-(X+ui)/s),
                                                                [14485,
                            ...: floor((X-ui)/s)+1)
                                                                 10493,
=2^20
                                                                 8213,
                            ....: for ui in u]
                                                                sage: u
                            sage: K
=randrange(1,Y+1)
                            [870056918917829,
                                                                [14485,
                             822006576592695,
                                                                 10493,
                                                                 8213,
                             -294765544345815,
=[randrange(
                             -669275100080982,
                                                                sage: s
   (s-1)//(2*N)+1)
                             528958455221029,
                                                                96821
 for i in range(N)]
                             426006001074157,
                                                                sage: s
                                                                96821
                             -641940176080531,
7039, 6945, 15890,
                             501543495923784,
                                                                sage: s
17333, 1397, 8656,
                                                                179756
                             -583064075392587,
6370]
                             46109390243834]
                                                                sage:
```

```
sage: K=[ui+s*randrange(
                                   sage: [Ki%s for
                                   [14485, 7039, 69
\ldots: ceil(-(X+ui)/s),
...: floor((X-ui)/s)+1)
                                    10493, 17333, 1
...: for ui in u]
                                    8213, 6370]
sage: K
                                   sage: u
[870056918917829,
                                   [14485, 7039, 69
                                    10493, 17333, 1
822006576592695,
                                    8213, 6370]
 -294765544345815,
                                   sage: sum(K)%s
 -669275100080982,
528958455221029,
                                   96821
                                   sage: sum(u)
426006001074157,
 -641940176080531,
                                   96821
                                   sage: s//2
501543495923784,
 -583064075392587,
                                   179756
 46109390243834]
                                   sage:
```

e(1,Y+1)

//(2*N)+1)

n range(N)]

45, 15890,

397, 8656,

ge(

```
6
                                      sage: [Ki%s for Ki in K]
  sage: K=[ui+s*randrange(
   \ldots: ceil(-(X+ui)/s),
                                       [14485, 7039, 6945, 15890
   ...: floor((X-ui)/s)+1)
                                       10493, 17333, 1397, 8656
                                       8213, 6370]
   ...: for ui in u]
  sage: K
                                      sage: u
   [870056918917829,
                                       [14485, 7039, 6945, 15890
   822006576592695,
                                       10493, 17333, 1397, 8656
                                       8213, 6370]
   -294765544345815,
                                      sage: sum(K)%s
   -669275100080982,
   528958455221029,
                                      96821
   426006001074157,
                                      sage: sum(u)
   -641940176080531,
                                      96821
                                      sage: s//2
   501543495923784,
   -583064075392587,
                                      179756
   46109390243834]
                                      sage:
```

]

```
sage: K=[ui+s*randrange(
\ldots: ceil(-(X+ui)/s),
...: floor((X-ui)/s)+1)
...: for ui in u]
sage: K
[870056918917829,
822006576592695,
-294765544345815,
 -669275100080982,
528958455221029,
426006001074157,
 -641940176080531,
501543495923784,
 -583064075392587,
461093902438347
```

```
sage: [Ki%s for Ki in K]
[14485, 7039, 6945, 15890,
 10493, 17333, 1397, 8656,
8213, 6370]
sage: u
[14485, 7039, 6945, 15890,
 10493, 17333, 1397, 8656,
8213, 6370]
sage: sum(K)%s
96821
sage: sum(u)
96821
sage: s//2
179756
sage:
```

```
=[ui+s*randrange(
                             sage: [Ki%s for Ki in K]
                                                                    sage: m
   ceil(-(X+ui)/s),
                              [14485, 7039, 6945, 15890,
                                                                    sage: r
                               10493, 17333, 1397, 8656,
   floor((X-ui)/s)+1)
                                                                    • • • •
                              8213, 6370]
 for ui in u]
                                                                    sage: C
                              sage: u
                                                                    • • • •
918917829,
                              [14485, 7039, 6945, 15890,
                                                                    sage: C
576592695,
                               10493, 17333, 1397, 8656,
                                                                    -2022158
                              8213, 6370]
5544345815,
                                                                    sage: C'
                              sage: sum(K)%s
5100080982,
                                                                    47024
455221029,
                             96821
                                                                    sage: m
                             sage: sum(u)
001074157,
                                                                    0
0176080531,
                             96821
                                                                    sage: s
495923784,
                             sage: s//2
                                                                    . . . . .
                              179756
                                                                   47024
4075392587,
90243834]
                                                                    sage:
                             sage:
```

```
sage: [Ki%s for Ki in K]
ndrange(
                                                        sage: m=randrang
-(X+ui)/s),
                   [14485, 7039, 6945, 15890,
                                                        sage: r=[randran
((X-ui)/s)+1)
                                                        ....: for i i
                    10493, 17333, 1397, 8656,
                    8213, 6370]
in u]
                                                        sage: C=(-1)^m*s
                                                        ...: for i in
                   sage: u
                   [14485, 7039, 6945, 15890,
                                                        sage: C
                    10493, 17333, 1397, 8656,
                                                        -202215856043576
                    8213, 6370]
                                                        sage: C%s
                   sage: sum(K)%s
                                                        47024
                   96821
                                                        sage: m
                   sage: sum(u)
                                                        0
                   96821
                                                        sage: sum(r[i]*u
1,
                                                                  for i
                   sage: s//2
7,
                   179756
                                                        47024
                   sage:
                                                        sage:
```

(1)+1)

```
sage: [Ki%s for Ki in K]
[14485, 7039, 6945, 15890,
 10493, 17333, 1397, 8656,
8213, 6370]
sage: u
[14485, 7039, 6945, 15890,
 10493, 17333, 1397, 8656,
8213, 6370]
sage: sum(K)%s
96821
sage: sum(u)
96821
sage: s//2
179756
sage:
```

```
sage: m=randrange(2)
sage: r=[randrange(2)
...: for i in range(N)]
sage: C=(-1)^m*sum(r[i]*K[i])
...: for i in range(N))
sage: C
-202215856043576
sage: C%s
47024
sage: m
0
sage: sum(r[i]*u[i]
...: for i in range(N))
47024
sage:
```

```
Some pr
1. Func
System
that hav
2. Secui
We wan
"chosen-
where at
decryptic
Chosen-
```

against ⁻ Decrypt

(Works

```
sage: m=randrange(2)
sage: r=[randrange(2)
...: for i in range(N)]
sage: C=(-1)^m*sum(r[i]*K[i])
...: for i in range(N))
sage: C
-202215856043576
sage: C%s
47024
sage: m
0
sage: sum(r[i]*u[i]
         for i in range(N))
47024
sage:
```

- Ki%s for Ki in K] 7039, 6945, 15890, 17333, 1397, 8656, 6370]
- 7039, 6945, 15890, 17333, 1397, 8656, 6370]
- um(K)%s
- um(u)
- //2

...: for i in range(N))

47024

sage:

Ki in K]

45, 15890,

397, 8656,

45, 15890,

397, 8656,

Some problems wi

- 1. Functionality p
 System can't encry
 that have more th
- 2. Security problem We want cryptosystichosen-ciphertext where attacker can decryptions of oth

Chosen-ciphertext against this system Decrypt -C. Flip

(Works whenever

```
8
```

```
sage: m=randrange(2)
sage: r=[randrange(2)
        for i in range(N)]
sage: C=(-1)^m*sum(r[i]*K[i])
...: for i in range(N))
sage: C
-202215856043576
sage: C%s
47024
sage: m
0
sage: sum(r[i]*u[i]
...: for i in range(N))
47024
sage:
```

Some problems with cryptos

- 1. Functionality problem:

 System can't encrypt messa, that have more than 1 bit.
- 2. Security problem:

We want cryptosystems to r "chosen-ciphertext attacks" where attacker can see decryptions of other cipherte

Chosen-ciphertext attack against this system: Decrypt -C. Flip result.

(Works whenever $C \neq 0$.)

```
sage: m=randrange(2)
sage: r=[randrange(2)
...: for i in range(N)]
sage: C=(-1)^m*sum(r[i]*K[i])
...: for i in range(N))
sage: C
-202215856043576
sage: C%s
47024
sage: m
0
sage: sum(r[i]*u[i]
...: for i in range(N))
47024
sage:
```

Some problems with cryptosystem

- 1. Functionality problem:
 System can't encrypt messages
 that have more than 1 bit.
- 2. Security problem:
 We want cryptosystems to resist
 "chosen-ciphertext attacks"
 where attacker can see

decryptions of other ciphertexts.

Chosen-ciphertext attack against this system: Decrypt -C. Flip result.

(Works whenever $C \neq 0$.)

```
=randrange(2)
=[randrange(2)
 for i in range(N)]
=(-1)^m*sum(r[i]*K[i])
for i in range(N))
356043576
%s
um(r[i]*u[i]
```

for i in range(N))

```
Some problems with cryptosystem
```

- 1. Functionality problem:
 System can't encrypt messages
 that have more than 1 bit.
- We want cryptosystems to resist "chosen-ciphertext attacks" where attacker can see decryptions of other ciphertexts.

Chosen-ciphertext attack against this system: Decrypt -C. Flip result.

2. Security problem:

(Works whenever $C \neq 0$.)

2000 Co

1. Transinto mul encrypti

Use new

B-bit in m = (m)For each

Generate

Cipherte $(-1)^{m_1}$

 $(-1)^{m_B}$

e(2)ge(2) n range(N)] um(r[i]*K[i]

range(N))

[i] in range(N))

Some problems with cryptosystem

- 1. Functionality problem: System can't encrypt messages that have more than 1 bit.
- 2. Security problem: We want cryptosystems to resist "chosen-ciphertext attacks" where attacker can see decryptions of other ciphertexts.

Chosen-ciphertext attack against this system: Decrypt -C. Flip result.

(Works whenever $C \neq 0$.)

2000 Cohen: cryp fixing both of thes

1. Transform 1-bit into multi-bit encr encrypting each bi Use new randomn

B-bit input messa $m = (m_1, \ldots, m_B)$ For each $i \in \{1, ...\}$

Generate $r_{i,1}, \ldots$,

Ciphertext *C*: $(-1)^{m_1}(r_{1,1}K_1+\cdots$

$$(-1)^{m_B}(r_{B,1}K_1 +$$

Some problems with cryptosystem

1. Functionality problem:
System can't encrypt messages
that have more than 1 bit.

2. Security problem:
We want cryptosystems to resist
"chosen-ciphertext attacks"
where attacker can see
decryptions of other ciphertexts.

Chosen-ciphertext attack against this system: Decrypt -C. Flip result.

(Works whenever $C \neq 0$.)

2000 Cohen: cryptosystem fixing both of these problem

1. Transform 1-bit encryption into multi-bit encryption by encrypting each bit separate Use new randomness for each

B-bit input message $m=(m_1,\ldots,m_B)\in\{0,1\}^D$ For each $i\in\{1,\ldots,B\}$:

Generate $r_{i,1}, \ldots, r_{i,N} \in \{0,$

Ciphertext *C*: $(-1)^{m_1}(r_{1.1}K_1 + \cdots + r_{1.N}K_1)$

 $(-1)^{m_B}(r_{B.1}K_1+\cdots+r_{B.N})$

)

[(

[i]

N))

Some problems with cryptosystem

- 1. Functionality problem:
 System can't encrypt messages
 that have more than 1 bit.
- 2. Security problem:
 We want cryptosystems to resist
 "chosen-ciphertext attacks"
 where attacker can see
 decryptions of other ciphertexts.

Chosen-ciphertext attack against this system: Decrypt -C. Flip result.

(Works whenever $C \neq 0$.)

2000 Cohen: cryptosystem fixing both of these problems.

1. Transform 1-bit encryption into multi-bit encryption by encrypting each bit separately.

Use new randomness for each bit.

B-bit input message $m=(m_1,\ldots,m_B)\in\{0,1\}^B$. For each $i\in\{1,\ldots,B\}$: Generate $r_{i,1},\ldots,r_{i,N}\in\{0,1\}$.

Ciphertext C: $(-1)^{m_1}(r_{1,1}K_1 + \cdots + r_{1,N}K_N),$ $\cdots,$ $(-1)^{m_B}(r_{B,1}K_1 + \cdots + r_{B,N}K_N).$ tionality problem:

can't encrypt messages

re more than 1 bit.

rity problem:

t cryptosystems to resist

-ciphertext attacks"

tacker can see

ons of other ciphertexts.

ciphertext attack

this system:

−*C*. Flip result.

whenever $C \neq 0$.)

2000 Cohen: cryptosystem fixing both of these problems.

1. Transform 1-bit encryption into multi-bit encryption by encrypting each bit separately.

Use new randomness for each bit.

B-bit input message $m=(m_1,\ldots,m_B)\in\{0,1\}^B$. For each $i\in\{1,\ldots,B\}$: Generate $r_{i,1},\ldots,r_{i,N}\in\{0,1\}$.

Ciphertext *C*:

$$(-1)^{m_1}(r_{1,1}K_1+\cdots+r_{1,N}K_N),$$

. . . ,

$$(-1)^{m_B}(r_{B,1}K_1+\cdots+r_{B,N}K_N).$$

2. Derai

This is a 1999 Fu

Derando
as crypto
using sta
(Watch

Decrypt

- 1. Input
- 2. Decry
- 3. Reco
- 4. Reco
- 5. Abort

th cryptosystem

roblem:

ypt messages an 1 bit.

m:

stems to resist

attacks"

n see

er ciphertexts.

attack

1:

result.

 $C \neq 0$.)

2000 Cohen: cryptosystem fixing both of these problems.

1. Transform 1-bit encryption into multi-bit encryption by encrypting each bit separately.

Use new randomness for each bit.

B-bit input message $m=(m_1,\ldots,m_B)\in\{0,1\}^B.$ For each $i\in\{1,\ldots,B\}$: Generate $r_{i,1},\ldots,r_{i,N}\in\{0,1\}.$

Ciphertext *C*:

$$(-1)^{m_1}(r_{1,1}K_1+\cdots+r_{1,N}K_N),$$

 $(-1)^{m_B}(r_{B.1}K_1+\cdots+r_{B.N}K_N).$

2. Derandomize e reencrypt during d

This is an example 1999 Fujisaki–Oka

Derandomization: as cryptographic husing standard has (Watch out: Is m

Decryption with re-

- 1. Input C'. (May
- 2. Decrypt to obta
- 3. Recompute r' =
- 4. Recompute C''
- 5. Abort if $C'' \neq 0$

10

system

ges

esist

exts.

2000 Cohen: cryptosystem fixing both of these problems.

1. Transform 1-bit encryption into multi-bit encryption by encrypting each bit separately.

Use new randomness for each bit.

B-bit input message $m=(m_1,\ldots,m_B)\in\{0,1\}^B$. For each $i\in\{1,\ldots,B\}$: Generate $r_{i,1},\ldots,r_{i,N}\in\{0,1\}$.

Ciphertext *C*:

$$(-1)^{m_1}(r_{1,1}K_1+\cdots+r_{1,N}K_N),$$

· · · ,

$$(-1)^{m_B}(r_{B,1}K_1+\cdots+r_{B,N}K_N).$$

2. Derandomize encryption, reencrypt during decryption.

11

This is an example of "FO", 1999 Fujisaki–Okamoto tran

Derandomization: Generate as cryptographic hash H(m) using standard hash function (Watch out: Is m guessable

Decryption with reencryptio

- 1. Input C'. (Maybe $C' \neq C$
- 2. Decrypt to obtain m'.
- 3. Recompute r' = H(m').
- 4. Recompute C'' from m',
- 5. Abort if $C'' \neq C'$.

2000 Cohen: cryptosystem fixing both of these problems.

1. Transform 1-bit encryption into multi-bit encryption by encrypting each bit separately.

Use new randomness for each bit.

B-bit input message $m=(m_1,\ldots,m_B)\in\{0,1\}^B.$ For each $i\in\{1,\ldots,B\}$: Generate $r_{i,1},\ldots,r_{i,N}\in\{0,1\}.$

Ciphertext *C*:

$$(-1)^{m_1}(r_{1,1}K_1 + \cdots + r_{1,N}K_N),$$

...,
 $(-1)^{m_B}(r_{B,1}K_1 + \cdots + r_{B,N}K_N).$

2. Derandomize encryption, and reencrypt during decryption.

This is an example of "FO", the 1999 Fujisaki–Okamoto transform.

Derandomization: Generate r as cryptographic hash H(m), using standard hash function H. (Watch out: Is m guessable?)

Decryption with reencryption:

- 1. Input C'. (Maybe $C' \neq C$.)
- 2. Decrypt to obtain m'.
- 3. Recompute r' = H(m').
- 4. Recompute C'' from m', r'.
- 5. Abort if $C'' \neq C'$.

sform 1-bit encryption ti-bit encryption by ng each bit separately. randomness for each bit.

put message

$$(1, \ldots, m_B) \in \{0, 1\}^B$$
.

$$i \in \{1, ..., B\}$$
:

e
$$r_{i,1}, \ldots, r_{i,N} \in \{0,1\}.$$

xt C:

$$(r_{1,1}K_1 + \cdots + r_{1,N}K_N),$$

$$(r_{B,1}K_1+\cdots+r_{B,N}K_N).$$

2. Derandomize encryption, and reencrypt during decryption.

This is an example of "FO", the 1999 Fujisaki–Okamoto transform.

Derandomization: Generate r as cryptographic hash H(m), using standard hash function H. (Watch out: Is m guessable?)

Decryption with reencryption:

- 1. Input C'. (Maybe $C' \neq C$.)
- 2. Decrypt to obtain m'.
- 3. Recompute r' = H(m').
- 4. Recompute C'' from m', r'.
- 5. Abort if $C'' \neq C'$.

Subset-s

Attacker for $(r_1, ...$ checks r against :

This take. e.g. 1024

"This fir

Thisapplicationencryptic

Also,to find a

tosystem se problems.

t encryption yption by t separately. ess for each bit.

$$(0,1)^{B}$$
.

., B}:

$$r_{i,N} \in \{0,1\}.$$

$$\cdots + r_{1,N}K_N$$
),

$$\cdots + r_{B,N}K_N$$
).

2. Derandomize encryption, and reencrypt during decryption.

This is an example of "FO", the 1999 Fujisaki-Okamoto transform.

Derandomization: Generate r as cryptographic hash H(m), using standard hash function H. (Watch out: Is *m* guessable?)

Decryption with reencryption:

- 1. Input C'. (Maybe $C' \neq C$.)
- 2. Decrypt to obtain m'.
- 3. Recompute r' = H(m').
- 4. Recompute C'' from m', r'.
- 5. Abort if $C'' \neq C'$.

Subset-sum attack

Attacker searches for $(r_1, ..., r_N)$, checks $r_1K_1 + \cdots$ against $\pm C_1$.

This takes 2^N easy e.g. 1024 operatio

"This finds only o

— This is a proble applications. Shou

encryption to leak

— Also, can easily to find all bits of r S.

ly.

n

h bit.

3.

1}.

 $\langle N \rangle$,

 $_{I}K_{N}).$

2. Derandomize encryption, and reencrypt during decryption.

This is an example of "FO", the 1999 Fujisaki–Okamoto transform.

Derandomization: Generate r as cryptographic hash H(m), using standard hash function H. (Watch out: Is m guessable?)

Decryption with reencryption:

- 1. Input C'. (Maybe $C' \neq C$.)
- 2. Decrypt to obtain m'.
- 3. Recompute r' = H(m').
- 4. Recompute C'' from m', r'.
- 5. Abort if $C'' \neq C'$.

Subset-sum attacks

Attacker searches all possibil for (r_1, \ldots, r_N) , checks $r_1K_1 + \cdots + r_NK_N$ against $\pm C_1$.

This takes 2^N easy operation e.g. 1024 operations for N = 1000

"This finds only one bit m_1 .

- This is a problem in som applications. Should design encryption to leak *no* inform
- Also, can easily modify a to find all bits of message.

12

2. Derandomize encryption, and reencrypt during decryption.

This is an example of "FO", the 1999 Fujisaki–Okamoto transform.

Derandomization: Generate r as cryptographic hash H(m), using standard hash function H. (Watch out: Is m guessable?)

Decryption with reencryption:

- 1. Input C'. (Maybe $C' \neq C$.)
- 2. Decrypt to obtain m'.
- 3. Recompute r' = H(m').
- 4. Recompute C'' from m', r'.
- 5. Abort if $C'' \neq C'$.

Subset-sum attacks

Attacker searches all possibilities for (r_1, \ldots, r_N) , checks $r_1K_1 + \cdots + r_NK_N$ against $\pm C_1$.

This takes 2^N easy operations: e.g. 1024 operations for N=10. "This finds only one bit m_1 ."

- This is a problem in some applications. Should design encryption to leak *no* information.
- Also, can easily modify attack to find all bits of message.

in example of "FO", the jisaki–Okamoto transform.

omization: Generate r ographic hash H(m), and and hash function H. out: Is m guessable?)

ion with reencryption:

C'. (Maybe $C' \neq C$.)

pt to obtain m'.

mpute r' = H(m').

mpute C'' from m', r'.

t if $C'' \neq C'$.

Subset-sum attacks

Attacker searches all possibilities for (r_1, \ldots, r_N) , checks $r_1K_1 + \cdots + r_NK_N$ against $\pm C_1$.

This takes 2^N easy operations: e.g. 1024 operations for N = 10.

"This finds only one bit m_1 ."

— This is a problem in some applications. Should design encryption to leak *no* information.

— Also, can easily modify attack to find all bits of message.

For each $r_1K_1 + \cdots$ containing

Modified

Apply thousand one message

Multi-ta

Finding total 2^N

Finding message total 0.0

ncryption, and lecryption.

e of "FO", the moto transform.

Generate r ash H(m), sh function H. guessable?)

eencryption:

be $C' \neq C$.)

ain m'.

= H(m').

from m', r'.

C′.

Subset-sum attacks

Attacker searches all possibilities for (r_1, \ldots, r_N) , checks $r_1K_1 + \cdots + r_NK_N$ against $\pm C_1$.

This takes 2^N easy operations: e.g. 1024 operations for N = 10.

"This finds only one bit m_1 ."

— This is a problem in some applications. Should design encryption to leak *no* information.

 Also, can easily modify attack to find all bits of message. For each $(r_1, \ldots, r_1, \ldots, r_1, K_1 + \cdots + r_N, K_1)$ containing $\pm C_1, \pm C_1$

Modified attack:

Apply this not just one message, but messages sent to the sent to

Finding all bits in total 2^N operation

Finding 1% of all messages, huge intotal $0.01 \cdot 2^N$ ope

and

the sform.

, n *H*. ?)

n: [].)

r¹

Subset-sum attacks

Attacker searches all possibilities for (r_1, \ldots, r_N) , checks $r_1K_1 + \cdots + r_NK_N$ against $\pm C_1$.

This takes 2^N easy operations: e.g. 1024 operations for N = 10.

"This finds only one bit m_1 ."

- This is a problem in some applications. Should design encryption to leak *no* information.
- Also, can easily modify attack to find all bits of message.

Modified attack:

For each (r_1, \ldots, r_N) , look c_1 , c_2 , c_3 , c_4 , c_4 , c_5 , c_6 , c_6 , c_6 , c_6 , c_6 , c_6 , c_8

Multi-target attack:

Apply this not just to *B* bits one message, but all bits in messages sent to this key.

Finding all bits in all message total 2^N operations.

Finding 1% of all bits in all messages, huge information total $0.01 \cdot 2^N$ operations.

Subset-sum attacks

Attacker searches all possibilities for (r_1, \ldots, r_N) , checks $r_1K_1 + \cdots + r_NK_N$ against $\pm C_1$.

This takes 2^N easy operations: e.g. 1024 operations for N = 10.

"This finds only one bit m_1 ."

- This is a problem in some applications. Should design encryption to leak *no* information.
- Also, can easily modify attack to find all bits of message.

Modified attack:

For each (r_1, \ldots, r_N) , look up $r_1K_1 + \cdots + r_NK_N$ in hash table containing $\pm C_1, \pm C_2, \ldots, \pm C_B$.

Multi-target attack:

Apply this not just to *B* bits in one message, but all bits in all messages sent to this key.

Finding all bits in all messages: total 2^N operations.

Finding 1% of all bits in all messages, huge information leak: total $0.01 \cdot 2^N$ operations.

um attacks

searches all possibilities \dots, r_N ,

$$r_1K_1+\cdots+r_NK_N$$

 $\pm C_1$.

es 2^N easy operations:

4 operations for N = 10.

nds only one bit m_1 ."

is a problem in some

ons. Should design

on to leak *no* information.

can easily modify attack

Ill bits of message.

Modified attack:

For each (r_1, \ldots, r_N) , look up $r_1K_1 + \cdots + r_NK_N$ in hash table containing $\pm C_1, \pm C_2, \ldots, \pm C_B$.

Multi-target attack:

Apply this not just to *B* bits in one message, but all bits in all messages sent to this key.

Finding all bits in all messages: total 2^N operations.

Finding 1% of all bits in all messages, huge information leak: total $0.01 \cdot 2^N$ operations.

"We can N = 128 day, and transform

take only to find (with $r_1 k$

— Stand

Make hat $C - r_{N/2}$ for all $(r_{N/2})$

Look up hash tab

<u>(S</u>

all possibilities

$$+ r_N K_N$$

y operations: N = 10.

ne bit m_1 ."

em in some
uld design
no information.

modify attack nessage.

Modified attack:

For each (r_1, \ldots, r_N) , look up $r_1K_1 + \cdots + r_NK_N$ in hash table containing $\pm C_1, \pm C_2, \ldots, \pm C_B$.

Multi-target attack:

Apply this not just to *B* bits in one message, but all bits in all messages sent to this key.

Finding all bits in all messages: total 2^N operations.

Finding 1% of all bits in all messages, huge information leak: total $0.01 \cdot 2^N$ operations.

"We can stop atta N = 128, and chaday, and applying transform to each

take only $2^{N/2}$ operator find (r_1, \ldots, r_N) with $r_1K_1 + \cdots +$

— Standard subset

Make hash table of $C - r_{N/2+1} K_{N/2+1}$ for all $(r_{N/2+1}, \ldots)$

Look up $r_1K_1 + \cdots$ hash table for each

lities

ns:

= 10.

77

e

nation.

ttack

Modified attack:

For each (r_1, \ldots, r_N) , look up $r_1K_1 + \cdots + r_NK_N$ in hash table containing $\pm C_1, \pm C_2, \ldots, \pm C_B$.

Multi-target attack:

Apply this not just to *B* bits in one message, but all bits in all messages sent to this key.

Finding all bits in all messages: total 2^N operations.

Finding 1% of all bits in all messages, huge information leak: total $0.01 \cdot 2^N$ operations.

"We can stop attacks by talk N=128, and changing keys day, and applying all-or-noth transform to each message."

— Standard subset-sum attached take only $2^{N/2}$ operations to find $(r_1, \ldots, r_N) \in \{0, 1\}$ with $r_1K_1 + \cdots + r_NK_N = 0$

Make hash table containing $C - r_{N/2+1} K_{N/2+1} - \cdots - r_{N/2+1}$ for all $(r_{N/2+1}, \ldots, r_N)$.

Look up $r_1K_1 + \cdots + r_{N/2}K_1$ hash table for each $(r_1, \ldots,$ 14

Modified attack:

For each $(r_1, ..., r_N)$, look up $r_1K_1 + \cdots + r_NK_N$ in hash table containing $\pm C_1, \pm C_2, ..., \pm C_B$.

Multi-target attack:

Apply this not just to *B* bits in one message, but all bits in all messages sent to this key.

Finding all bits in all messages: total 2^N operations.

Finding 1% of all bits in all messages, huge information leak: total $0.01 \cdot 2^N$ operations.

"We can stop attacks by taking N = 128, and changing keys every day, and applying all-or-nothing transform to each message."

— Standard subset-sum attacks take only $2^{N/2}$ operations to find $(r_1, \ldots, r_N) \in \{0, 1\}^N$ with $r_1K_1 + \cdots + r_NK_N = C$.

Make hash table containing $C - r_{N/2+1} K_{N/2+1} - \cdots - r_N K_N$ for all $(r_{N/2+1}, \ldots, r_N)$.

Look up $r_1K_1 + \cdots + r_{N/2}K_{N/2}$ in hash table for each $(r_1, \ldots, r_{N/2})$.

dattack:

 (r_1,\ldots,r_N) , look up $\cdots + r_N K_N$ in hash table $\log \pm C_1, \pm C_2, \ldots, \pm C_B.$

rget attack:

nis not just to B bits in sage, but all bits in all s sent to this key.

all bits in all messages: operations.

1% of all bits in all s, huge information leak: $1 \cdot 2^N$ operations.

"We can stop attacks by taking N = 128, and changing keys every day, and applying all-or-nothing transform to each message."

— Standard subset-sum attacks take only $2^{N/2}$ operations to find $(r_1, ..., r_N) \in \{0, 1\}^N$ with $r_1K_1 + \cdots + r_NK_N = C$.

Make hash table containing $C - r_{N/2+1}K_{N/2+1} - \cdots - r_NK_N$ for all $(r_{N/2+1}, ..., r_N)$.

Look up $r_1K_1 + \cdots + r_{N/2}K_{N/2}$ in hash table for each $(r_1, \ldots, r_{N/2})$.

These a structure one targ (Actually $\pm C_1, \ldots$ Convert total B^1 to find a have mo

There ar exploit t

1981 Sc $2^{N/2}$ ope (N), look up N in hash table $C_2, \ldots, \pm C_B$.

t to *B* bits in all bits in this key.

all messages:

bits in all formation leak: erations.

"We can stop attacks by taking N = 128, and changing keys every day, and applying all-or-nothing transform to each message."

— Standard subset-sum attacks take only $2^{N/2}$ operations to find $(r_1, \ldots, r_N) \in \{0, 1\}^N$ with $r_1K_1 + \cdots + r_NK_N = C$.

Make hash table containing $C - r_{N/2+1}K_{N/2+1} - \cdots - r_NK_N$ for all $(r_{N/2+1}, \ldots, r_N)$.

Look up $r_1K_1 + \cdots + r_{N/2}K_{N/2}$ in hash table for each $(r_1, \ldots, r_{N/2})$.

structure of proble one target C into (Actually have 2B $\pm C_1, \ldots, \pm C_B$ for Convert into $B^{1/2}$ total $B^{1/2}2^{N/2}$ op to find all B bits.

These attacks exp

There are even more exploit the linear s

have more messag

1981 Schroeppel— $3^{N/2}$ operations, s

table C_B .

s in all

ges:

leak:

"We can stop attacks by taking N = 128, and changing keys every day, and applying all-or-nothing transform to each message."

— Standard subset-sum attacks take only $2^{N/2}$ operations to find $(r_1, \ldots, r_N) \in \{0, 1\}^N$ with $r_1K_1 + \cdots + r_NK_N = C$.

Make hash table containing $C - r_{N/2+1}K_{N/2+1} - \cdots - r_NK_N$ for all $(r_{N/2+1}, \ldots, r_N)$.

Look up $r_1K_1 + \cdots + r_{N/2}K_{N/2}$ in hash table for each $(r_1, \ldots, r_{N/2})$.

These attacks exploit linear structure of problem to convone target C into many target

(Actually have 2B targets $\pm C_1, \ldots, \pm C_B$ for one mess Convert into $B^{1/2}2^{N/2}$ target total $B^{1/2}2^{N/2}$ operations to find all B bits. Also, may have more messages to attach

There are even more ways to exploit the linear structure.

1981 Schroeppel–Shamir: $2^{N/2}$ operations, space $2^{N/4}$

15

"We can stop attacks by taking N = 128, and changing keys every day, and applying all-or-nothing transform to each message."

— Standard subset-sum attacks take only $2^{N/2}$ operations to find $(r_1, \ldots, r_N) \in \{0, 1\}^N$ with $r_1K_1 + \cdots + r_NK_N = C$.

Make hash table containing $C - r_{N/2+1} K_{N/2+1} - \cdots - r_N K_N$ for all $(r_{N/2+1}, \ldots, r_N)$.

Look up $r_1K_1 + \cdots + r_{N/2}K_{N/2}$ in hash table for each $(r_1, \ldots, r_{N/2})$.

These attacks exploit linear structure of problem to convert one target *C* into many targets.

(Actually have 2B targets $\pm C_1, \ldots, \pm C_B$ for one message. Convert into $B^{1/2}2^{N/2}$ targets: total $B^{1/2}2^{N/2}$ operations to find all B bits. Also, maybe have more messages to attack.)

There are even more ways to exploit the linear structure.

1981 Schroeppel–Shamir: $2^{N/2}$ operations, space $2^{N/4}$.

stop attacks by taking

and changing keys every
applying all-or-nothing
to each message."

dard subset-sum attacks $2^{N/2}$ operations $r_1, \ldots, r_N \in \{0, 1\}^N$

$$K_1 + \cdots + r_N K_N = C.$$

sh table containing

$$r_{N/2+1} - \cdots - r_N K_N$$

 $r_{N/2+1}, \ldots, r_N$.

$$r_1K_1 + \cdots + r_{N/2}K_{N/2}$$
 in le for each $(r_1, \dots, r_{N/2})$.

These attacks exploit linear structure of problem to convert one target C into many targets.

(Actually have 2B targets $\pm C_1, \ldots, \pm C_B$ for one message. Convert into $B^{1/2}2^{N/2}$ targets: total $B^{1/2}2^{N/2}$ operations to find all B bits. Also, maybe have more messages to attack.)

There are even more ways to exploit the linear structure.

1981 Schroeppel–Shamir: $2^{N/2}$ operations, space $2^{N/4}$.

claimed May–Me

2010 Hc

2011 Be $2^{0.291N}$

2016 Oz

2019 Essoperation

2020 Bo Schrotte

Quantur

Multi-ta

nging keys every all-or-nothing message."

et-sum attacks erations $0 \in \{0, 1\}^N$

$$r_N K_N = C$$
.

ontaining

$$(r_N)$$
.

$$r_1 + r_{N/2}K_{N/2}$$
 in $r_1, \ldots, r_{N/2}$.

These attacks exploit linear structure of problem to convert one target *C* into many targets.

(Actually have 2B targets $\pm C_1, \ldots, \pm C_B$ for one message. Convert into $B^{1/2}2^{N/2}$ targets: total $B^{1/2}2^{N/2}$ operations to find all B bits. Also, maybe have more messages to attack.)

There are even more ways to exploit the linear structure.

1981 Schroeppel–Shamir: $2^{N/2}$ operations, space $2^{N/4}$.

2010 Howgrave-Grand 20.311N op Claimed 20.311N op May–Meurer corre

2011 Becker–Coro 2^{0.291}N operations

2016 Ozerov: 2^{0.2}

2019 Esser–May: operations, but wi

2020 Bonnetain-B Schrottenloher-Sh

Quantum attacks:

Multi-target speed

king s every ning

acks

V

C .

 $r_N K_N$

(N/2) in $(r_{N/2})$.

These attacks exploit linear structure of problem to convert one target C into many targets.

(Actually have 2B targets $\pm C_1, \ldots, \pm C_B$ for one message. Convert into $B^{1/2}2^{N/2}$ targets: total $B^{1/2}2^{N/2}$ operations to find all B bits. Also, maybe have more messages to attack.)

There are even more ways to exploit the linear structure.

1981 Schroeppel–Shamir: $2^{N/2}$ operations, space $2^{N/4}$.

2010 Howgrave-Graham–Jouclaimed 2^{0.311}N operations.

May–Meurer correction: 2^{0.3}

2011 Becker–Coron–Joux: 2^{0.291}N operations.

2016 Ozerov: 2^{0.287}*N* opera

2019 Esser–May: claimed 2019 operations, but withdrew cla

2020 Bonnetain-Bricout-Schrottenloher-Shen: 2^{0.283}

Quantum attacks: various p

Multi-target speedups: prob

These attacks exploit linear structure of problem to convert one target *C* into many targets.

(Actually have 2B targets $\pm C_1, \ldots, \pm C_B$ for one message. Convert into $B^{1/2}2^{N/2}$ targets: total $B^{1/2}2^{N/2}$ operations to find all B bits. Also, maybe have more messages to attack.)

There are even more ways to exploit the linear structure.

1981 Schroeppel–Shamir: $2^{N/2}$ operations, space $2^{N/4}$.

2010 Howgrave-Graham–Joux: claimed 2^{0.311}N operations. 2011 May–Meurer correction: 2^{0.337}N.

2011 Becker–Coron–Joux: 2^{0.291}N operations.

2016 Ozerov: 2^{0.287}N operations.

2019 Esser–May: claimed 2^{0.255}N operations, but withdrew claim.

2020 Bonnetain-Bricout-Schrottenloher-Shen: 2^{0.283}N.

Quantum attacks: various papers.

Multi-target speedups: probably!

16

et acks exploit linear et of problem to convert et C into many targets.

y have 2B targets, $\pm C_B$ for one message. into $B^{1/2}2^{N/2}$ targets: $^{/2}2^{N/2}$ operations all B bits. Also, maybe

re messages to attack.)

re even more ways to he linear structure.

hroeppel—Shamir: erations, space 2^{N/4}. 2010 Howgrave-Graham–Joux: claimed 2^{0.311}N operations. 2011 May–Meurer correction: 2^{0.337}N.

2011 Becker–Coron–Joux: 2^{0.291}N operations.

2016 Ozerov: 2^{0.287N} operations.

2019 Esser–May: claimed 2^{0.255}N operations, but withdrew claim.

2020 Bonnetain-Bricout-Schrottenloher-Shen: 2^{0.283}N.

Quantum attacks: various papers.

Multi-target speedups: probably!

<u>Variants</u>

2003 Re
(without $(-1)^{m}(n)$ $m(K_{1}/2)$

To make modify k and $(K_1$ Also be

2009 vai Vaikunta

C = m -

m = (C

Be caref

targets
one message. $2^{N/2}$ targets:
erations
Also, maybe
es to attack.)

ore ways to structure.

Shamir: pace 2^{N/4}. 2010 Howgrave-Graham–Joux: claimed 2^{0.311}N operations. 2011 May–Meurer correction: 2^{0.337}N.

2011 Becker–Coron–Joux: 2^{0.291}N operations.

2016 Ozerov: 2^{0.287}N operations.

2019 Esser–May: claimed 2^{0.255}N operations, but withdrew claim.

2020 Bonnetain-Bricout-Schrottenloher-Shen: 2^{0.283}N.

Quantum attacks: various papers.

Multi-target speedups: probably!

Variants of crypto

2003 Regev: Cohe (without credit), ker $(-1)^m (r_1 K_1 + \cdots + r_1 K_1 +$

and $(K_1 - u_1)/s \in$ Also be careful with

modify keygen to

2009 van Dijk-Ge Vaikuntanathan:

$$C = m + r_1 K_1 + \cdot$$

 $m = (C \mod s) \mod s$

Be careful to take

ert ets.

age.

ets:

be ck.)

C

.

2010 Howgrave-Graham–Joux: claimed 2^{0.311}N operations. 2011 May–Meurer correction: 2^{0.337}N.

2011 Becker–Coron–Joux: 2^{0.291}N operations.

2016 Ozerov: 2^{0.287}N operations.

2019 Esser–May: claimed 2^{0.255}N operations, but withdrew claim.

2020 Bonnetain-Bricout-Schrottenloher-Shen: 2^{0.283}N.

Quantum attacks: various papers.

Multi-target speedups: probably!

Variants of cryptosystem

2003 Regev: Cohen cryptosy (without credit), but replace $(-1)^m (r_1 K_1 + \cdots + r_N K_N)$ $m(K_1/2) + r_1 K_1 + \cdots + r_N$

To make this work, modify keygen to force $K_1 \in$ and $(K_1 - u_1)/s \in 1 + 2\mathbf{Z}$. Also be careful with u_i bour

2009 van Dijk-Gentry-Halev Vaikuntanathan: $K_i \in 2u_i + C = m + r_1K_1 + \cdots + r_NK_N$ $m = (C \mod s) \mod 2.$

Be careful to take $s \in 1+2$

17

2010 Howgrave-Graham–Joux: claimed 2^{0.311}N operations. 2011 May–Meurer correction: 2^{0.337}N.

2011 Becker–Coron–Joux: 2^{0.291}N operations.

2016 Ozerov: 2^{0.287}N operations.

2019 Esser–May: claimed 2^{0.255}N operations, but withdrew claim.

2020 Bonnetain-Bricout-Schrottenloher-Shen: 2^{0.283}N.

Quantum attacks: various papers.

Multi-target speedups: probably!

Variants of cryptosystem

2003 Regev: Cohen cryptosystem (without credit), but replace $(-1)^m(r_1K_1 + \cdots + r_NK_N)$ with $m(K_1/2) + r_1K_1 + \cdots + r_NK_N$.

To make this work, modify keygen to force $K_1 \in 2\mathbf{Z}$ and $(K_1 - u_1)/s \in 1 + 2\mathbf{Z}$. Also be careful with u_i bounds.

2009 van Dijk-Gentry-Halevi-Vaikuntanathan: $K_i \in 2u_i + s\mathbf{Z}$; $C = m + r_1K_1 + \cdots + r_NK_N$; $m = (C \mod s) \mod 2$. Be careful to take $s \in 1 + 2\mathbf{Z}$. wgrave-Graham-Joux: $2^{0.311N}$ operations. 2011 eurer correction: $2^{0.337N}$.

cker–Coron–Joux: operations.

erov: 2^{0.287} operations.

ser–May: claimed $2^{0.255N}$ ns, but withdrew claim.

nnetain-Bricoutenloher-Shen: 2^{0.283}N.

n attacks: various papers.

rget speedups: probably!

Variants of cryptosystem

2003 Regev: Cohen cryptosystem (without credit), but replace $(-1)^m(r_1K_1 + \cdots + r_NK_N)$ with $m(K_1/2) + r_1K_1 + \cdots + r_NK_N$.

To make this work, modify keygen to force $K_1 \in 2\mathbf{Z}$ and $(K_1 - u_1)/s \in 1 + 2\mathbf{Z}$. Also be careful with u_i bounds.

2009 van Dijk-Gentry-Halevi-Vaikuntanathan: $K_i \in 2u_i + s\mathbf{Z}$; $C = m + r_1K_1 + \cdots + r_NK_N$; $m = (C \mod s) \mod 2$. Be careful to take $s \in 1 + 2\mathbf{Z}$.

Homom₀

If u_i/s is DGHV s

Take two C = m - 1

C'=m'

with sm

C + C' = s(q + q')

m + m'

CC' = n $s(\cdots)$

mm' if ϵ

raham–Joux:

perations. 2011 ection: 2^{0.337}N.

n-Joux:

.

87N operations.

claimed 2^{0.255}N thdrew claim.

Bricouten: 2^{0.283}N.

various papers.

lups: probably!

Variants of cryptosystem

2003 Regev: Cohen cryptosystem (without credit), but replace $(-1)^m(r_1K_1 + \cdots + r_NK_N)$ with $m(K_1/2) + r_1K_1 + \cdots + r_NK_N$.

To make this work, modify keygen to force $K_1 \in 2\mathbf{Z}$ and $(K_1 - u_1)/s \in 1 + 2\mathbf{Z}$. Also be careful with u_i bounds.

2009 van Dijk-Gentry-Halevi-Vaikuntanathan: $K_i \in 2u_i + s\mathbf{Z}$; $C = m + r_1K_1 + \cdots + r_NK_N$; $m = (C \mod s) \mod 2$. Be careful to take $s \in 1 + 2\mathbf{Z}$.

Homomorphic enc

If u_i/s is small end DGHV system is h Take two ciphertes $C = m + 2\epsilon + sq$ $C'=m'+2\epsilon'+s\epsilon'$ with small $\epsilon, \epsilon' \in \mathcal{I}$ C + C' = m + m's(q+q'). This de

$$CC' = mm' + 2(\epsilon n)$$

 $s(\cdots)$. This decry
 mm' if $\epsilon m' + \epsilon' m$

 $m + m' \mod 2$ if ϵ

JX:

2011 337*N*

tions.

).255*N*

aim.

N

apers.

ably!

Variants of cryptosystem

2003 Regev: Cohen cryptosystem (without credit), but replace $(-1)^m(r_1K_1 + \cdots + r_NK_N)$ with $m(K_1/2) + r_1K_1 + \cdots + r_NK_N$.

To make this work, modify keygen to force $K_1 \in 2\mathbf{Z}$ and $(K_1 - u_1)/s \in 1 + 2\mathbf{Z}$. Also be careful with u_i bounds.

2009 van Dijk-Gentry-Halevi-Vaikuntanathan: $K_i \in 2u_i + s\mathbf{Z}$; $C = m + r_1K_1 + \cdots + r_NK_N$; $m = (C \mod s) \mod 2$. Be careful to take $s \in 1 + 2\mathbf{Z}$.

Homomorphic encryption

If u_i/s is small enough then DGHV system is homomorp

Take two ciphertexts:

$$C = m + 2\epsilon + sq$$
,
 $C' = m' + 2\epsilon' + sq'$
with small $\epsilon, \epsilon' \in \mathbf{Z}$.

s(q+q'). This decrypts to $m+m' \mod 2$ if $\epsilon+\epsilon'$ is small $CC'=mm'+2(\epsilon m'+\epsilon' m+2\epsilon')$. This decrypts to mm' if $\epsilon m'+\epsilon' m+2\epsilon\epsilon'$ is satisfactory.

 $C + C' = m + m' + 2(\epsilon + \epsilon')$

Variants of cryptosystem

2003 Regev: Cohen cryptosystem (without credit), but replace $(-1)^m(r_1K_1 + \cdots + r_NK_N)$ with $m(K_1/2) + r_1K_1 + \cdots + r_NK_N$.

To make this work, modify keygen to force $K_1 \in 2\mathbf{Z}$ and $(K_1 - u_1)/s \in 1 + 2\mathbf{Z}$. Also be careful with u_i bounds.

2009 van Dijk-Gentry-Halevi-Vaikuntanathan: $K_i \in 2u_i + s\mathbf{Z}$; $C = m + r_1K_1 + \cdots + r_NK_N$; $m = (C \mod s) \mod 2$. Be careful to take $s \in 1 + 2\mathbf{Z}$.

Homomorphic encryption

If u_i/s is small enough then 2009 DGHV system is homomorphic.

Take two ciphertexts:

$$C = m + 2\epsilon + sq$$
,
 $C' = m' + 2\epsilon' + sq'$
with small $\epsilon, \epsilon' \in \mathbf{Z}$.

$$C + C' = m + m' + 2(\epsilon + \epsilon') + s(q + q')$$
. This decrypts to $m + m' \mod 2$ if $\epsilon + \epsilon'$ is small.

$$CC' = mm' + 2(\epsilon m' + \epsilon' m + 2\epsilon \epsilon') + s(\cdots)$$
. This decrypts to mm' if $\epsilon m' + \epsilon' m + 2\epsilon \epsilon'$ is small.

of cryptosystem

gev: Cohen cryptosystem credit), but replace $r_1K_1 + \cdots + r_NK_N$) with $+ r_1 K_1 + \cdots + r_N K_N$

this work,

keygen to force $K_1 \in 2\mathbf{Z}$

 $-u_1)/s \in 1+2\mathbf{Z}.$

careful with *u_i* bounds.

n Dijk-Gentry-Halevi-

anathan: $K_i \in 2u_i + s\mathbf{Z}$;

 $\vdash r_1K_1 + \cdots + r_NK_N;$

mod s) mod 2.

ul to take $s \in 1 + 2\mathbf{Z}$.

Homomorphic encryption

If u_i/s is small enough then 2009 DGHV system is homomorphic.

Take two ciphertexts:

 $C = m + 2\epsilon + sq$

 $C' = m' + 2\epsilon' + sq'$

with small $\epsilon, \epsilon' \in \mathbf{Z}$.

 $C + C' = m + m' + 2(\epsilon + \epsilon') + \epsilon'$

s(q+q'). This decrypts to

 $m + m' \mod 2$ if $\epsilon + \epsilon'$ is small.

 $CC' = mm' + 2(\epsilon m' + \epsilon' m + 2\epsilon \epsilon') +$

 $s(\cdots)$. This decrypts to

mm' if $\epsilon m' + \epsilon' m + 2\epsilon \epsilon'$ is small.

sage: Na

sage: E

sage: Y

sage: X

sage: s

sage: s

9848873

sage: u

.

sage: u

[247, 4

772, 2

sage:

en cryptosystem

out replace

$$+ r_N K_N$$
) with

 $+\cdots+r_{N}K_{N}.$

ζ,

force $K_1 \in 2\mathbf{Z}$

= 1 + 2**Z**.

th *ui* bounds.

ntry–Halevi–

$$K_i \in 2u_i + s\mathbf{Z};$$

$$\cdots + r_{N}K_{N};$$

od 2.

$$s \in 1 + 2\mathbf{Z}$$
.

Homomorphic encryption

If u_i/s is small enough then 2009 DGHV system is homomorphic.

Take two ciphertexts:

$$C = m + 2\epsilon + sq$$
,

$$C' = m' + 2\epsilon' + sq'$$

with small $\epsilon, \epsilon' \in \mathbf{Z}$.

$$C + C' = m + m' + 2(\epsilon + \epsilon') +$$

s(q+q'). This decrypts to

 $m + m' \mod 2$ if $\epsilon + \epsilon'$ is small.

$$CC' = mm' + 2(\epsilon m' + \epsilon' m + 2\epsilon \epsilon') +$$

 $s(\cdots)$. This decrypts to

mm' if $\epsilon m' + \epsilon' m + 2\epsilon \epsilon'$ is small.

sage: N=10

sage: E=2^10

sage: $Y=2^50$

sage: X=2^80

sage: s=1+2*rand

sage: s

984887308997925

sage: u=[randran

...: for i i

sage: u

[247, 418, 365,

772, 209, 673,

sage:

ystem

with

 K_{N} .

= 2**Z**

ıds.

- s**Z**;

Homomorphic encryption

If u_i/s is small enough then 2009 DGHV system is homomorphic.

Take two ciphertexts:

$$C = m + 2\epsilon + sq$$
,
 $C' = m' + 2\epsilon' + sq'$
with small $\epsilon, \epsilon' \in \mathbf{Z}$.

$$C + C' = m + m' + 2(\epsilon + \epsilon') + s(q + q')$$
. This decrypts to $m + m' \mod 2$ if $\epsilon + \epsilon'$ is small.

 $CC' = mm' + 2(\epsilon m' + \epsilon' m + 2\epsilon \epsilon') + s(\cdots)$. This decrypts to mm' if $\epsilon m' + \epsilon' m + 2\epsilon \epsilon'$ is small.

```
sage: N=10
```

984887308997925

sage:

Homomorphic encryption

If u_i/s is small enough then 2009 DGHV system is homomorphic.

Take two ciphertexts:

$$C = m + 2\epsilon + sq$$
,
 $C' = m' + 2\epsilon' + sq'$
with small $\epsilon, \epsilon' \in \mathbf{Z}$.

 $C + C' = m + m' + 2(\epsilon + \epsilon') + s(q + q')$. This decrypts to $m + m' \mod 2$ if $\epsilon + \epsilon'$ is small.

 $CC' = mm' + 2(\epsilon m' + \epsilon' m + 2\epsilon \epsilon') + s(\cdots)$. This decrypts to mm' if $\epsilon m' + \epsilon' m + 2\epsilon \epsilon'$ is small.

sage: N=10

sage: E=2^10

sage: $Y=2^50$

sage: X=2^80

sage: s=1+2*randrange(Y/4,Y/2)

sage: s

984887308997925

sage: u=[randrange(E)

...: for i in range(N)]

sage: u

[247, 418, 365, 738, 123, 735,

772, 209, 673, 47]

sage:

orphic encryption

s small enough then 2009 system is homomorphic.

o ciphertexts:

$$+2\epsilon + sq$$
,

$$+2\epsilon'+sq'$$

all $\epsilon, \epsilon' \in \mathbf{Z}$.

$$= m + m' + 2(\epsilon + \epsilon') + \epsilon'$$

). This decrypts to

mod 2 if $\epsilon + \epsilon'$ is small.

$$mm'+2(\epsilon m'+\epsilon' m+2\epsilon\epsilon')+$$

This decrypts to

 $m' + \epsilon' m + 2\epsilon\epsilon'$ is small.

sage: N=10

sage: E=2^10

sage: Y=2^50

sage: X=2^80

sage: s=1+2*randrange(Y/4,Y/2)

sage: s

984887308997925

sage: u=[randrange(E)

...: for i in range(N)]

sage: u

[247, 418, 365, 738, 123, 735,

772, 209, 673, 47]

sage:

sage: K

• • • •

• • • •

• • • •

sage: K

[587473

-11115

7943014 6881780

7/10260

742362

102334

-35716

112142

-11096

-23562

ough then 2009

omomorphic.

sage: N=10

sage: E=2^10

sage: $Y=2^50$

sage: X=2^80

sage: s=1+2*randrange(Y/4,Y/2)

sage: s

984887308997925

sage: u=[randrange(E)

...: for i in range(N)]

sage: u

[247, 418, 365, 738, 123, 735,

772, 209, 673, 47]

sage:

xts:

sage: K

[587473338058640

sage: K=[2*ui+s*

ceil(

floor

for ui

794301459533783

-11115391791007

688178021083749

742362470968200

102334582783153

-35716867939855

112142161911996

-11096748622762

-23562893778500

 $+2(\epsilon+\epsilon')+$ ecrypts to $+\epsilon'$ is small. $n' + \epsilon' m + 2\epsilon \epsilon') +$ pts to

 $+ 2\epsilon\epsilon'$ is small.

```
sage: N=10
sage: E=2^10
```

sage: Y=2^50

sage: X=2^80

sage: s=1+2*randrange(Y/4,Y/2)

sage: s

984887308997925

sage: u=[randrange(E)

...: for i in range(N)]

sage: u

[247, 418, 365, 738, 123, 735,

772, 209, 673, 47]

sage:

mall.

 $2\epsilon\epsilon')+$

hic.

) +

nall.

sage: K=[2*ui+s*randrange

ceil(-(X+2*ui)
floor((X-2*ui)

....: for ui in u]

sage: K

[587473338058640662659869

-11115391791007200837703

794301459533783434896055 68817802108374958901751,

742362470968200823035396

102334582783153951505479

-35716867939855887673000

112142161911996460105144

-11096748622762224955871

-23562893778500377052338

```
sage: N=10
sage: E=2^10
sage: Y=2^50
```

sage: X=2^80

sage: s=1+2*randrange(Y/4,Y/2)

sage: s

984887308997925

sage: u=[randrange(E)

...: for i in range(N)]

sage: u

[247, 418, 365, 738, 123, 735,

772, 209, 673, 47]

sage:

```
sage: K=[2*ui+s*randrange(
```

...: ceil(-(X+2*ui)/s),

...: floor((X-2*ui)/s)+1)

...: for ui in u]

sage: K

[587473338058640662659869,

-1111539179100720083770339,

794301459533783434896055,

68817802108374958901751,

742362470968200823035396,

1023345827831539515054795,

-357168679398558876730006,

1121421619119964601051443,

-1109674862276222495587129,

-235628937785003770523381]

```
sage: K=[2*ui+s*randrange(
=10
                                                                 sage: m
=2^10
                                       ceil(-(X+2*ui)/s),
                                                                 sage: r
                             •
                                        floor((X-2*ui)/s)+1)
=2^50
                             • • • • •
                                                                  • • • • •
=2^80
                                      for ui in u]
                                                                 sage: Ca
                             • • • •
=1+2*randrange(Y/4,Y/2)
                             sage: K
                                                                  • • • •
                             [587473338058640662659869,
                                                                 sage: C
08997925
                              -1111539179100720083770339,
                                                                 2094088
=[randrange(E)
                                                                 sage: C'
                             794301459533783434896055,
 for i in range(N)]
                              68817802108374958901751,
                                                                 2703
                              742362470968200823035396,
                                                                 sage: (
18, 365, 738, 123, 735,
                              1023345827831539515054795,
09, 673, 47]
                              -357168679398558876730006,
                                                                 sage: m
                              1121421619119964601051443,
                              -1109674862276222495587129,
                                                                 sage:
                              -235628937785003770523381]
```

21

20

```
ceil(-(X+2*ui)/s),
                                                        sage: r=[randran
                               floor((X-2*ui)/s)+1)
                                                                  for i i
                                                        sage: C=m+sum(r[
                             for ui in u]
range(Y/4,Y/2)
                                                                 for i i
                   sage: K
                    [587473338058640662659869,
                                                        sage: C
                    -1111539179100720083770339,
                                                        2094088748748247
ge(E)
                    794301459533783434896055,
                                                        sage: C%s
n range(N)]
                    68817802108374958901751,
                                                        2703
                    742362470968200823035396,
                                                        sage: (C%s)%2
738, 123, 735,
                     1023345827831539515054795,
47]
                    -357168679398558876730006,
                                                        sage: m
                     1121421619119964601051443,
                    -1109674862276222495587129,
                                                        sage:
                    -235628937785003770523381]
```

-235628937785003770523381]

(Y/2)

]

735,

```
sage: K=[2*ui+s*randrange(
          ceil(-(X+2*ui)/s),
. . . . .
           floor((X-2*ui)/s)+1)
•
...: for ui in u]
sage: K
[587473338058640662659869,
 -1111539179100720083770339,
 794301459533783434896055,
 68817802108374958901751,
 742362470968200823035396,
 1023345827831539515054795,
 -357168679398558876730006,
 1121421619119964601051443,
 -1109674862276222495587129,
 -235628937785003770523381]
```

```
sage: m=randrange(2)
sage: r=[randrange(2)
         for i in range(N)]
sage: C=m+sum(r[i]*K[i]
...: for i in range(N))
sage: C
2094088748748247210016703
sage: C%s
2703
sage: (C%s)%2
sage: m
sage:
```

for i in range(N)]

sage: C=m+sum(r[i]*K[i]

...: for i in range(N))

21 ceil(-(X+2*ui)/s),floor((X-2*ui)/s)+1)

sage: C 2094088748748247210016703

sage: C%s

2703

sage: (C%s)%2

sage: m

sage:

338058640662659869,

for ui in u]

=[2*ui+s*randrange(

39179100720083770339,

459533783434896055,

02108374958901751,

470968200823035396,

5827831539515054795,

8679398558876730006,

1619119964601051443,

74862276222495587129,

3937785003770523381]

sage: r

• • • • sage: C

• • • •

-517223

sage: C

sage: C 4971

sage: (

sage: m

sage:

```
randrange(
-(X+2*ui)/s),
((X-2*ui)/s)+1)
in u]
662659869,
20083770339,
434896055,
58901751,
823035396,
9515054795,
8876730006,
4601051443,
22495587129,
3770523381]
```

```
sage: m=randrange(2)
                                    sage: m2=randran
sage: r=[randrange(2)
                                    sage: r2=[randra
         for i in range(N)]
                                              for i
                                    sage: C2=m2+sum(
sage: C=m+sum(r[i]*K[i]
...: for i in range(N))
                                             for i
                                    • • • •
sage: C
                                    sage: C2
2094088748748247210016703
                                    -517223537379827
sage: C%s
                                    sage: C2%s
2703
                                    4971
sage: (C%s)%2
                                    sage: (C2%s)%2
                                    sage: m2
sage: m
sage:
                                    sage:
```

```
21
                                           22
                                              sage: m2=randrange(2)
          sage: m=randrange(2)
/s),
          sage: r=[randrange(2)
                                              sage: r2=[randrange(2)
/s)+1)
          ...: for i in range(N)]
                                                         for i in range(
          sage: C=m+sum(r[i]*K[i]
                                              sage: C2=m2+sum(r2[i]*K[i
          ...: for i in range(N))
                                               ...: for i in range(
          sage: C
                                              sage: C2
39,
          2094088748748247210016703
                                              -51722353737982737270129
          sage: C%s
                                              sage: C2%s
                                              4971
          2703
          sage: (C%s)%2
                                              sage: (C2%s)%2
5,
          1
6,
          sage: m
                                              sage: m2
3,
29,
          sage:
                                              sage:
1]
```

```
sage: m=randrange(2)
sage: r=[randrange(2)
...: for i in range(N)]
sage: C=m+sum(r[i]*K[i]
...: for i in range(N))
sage: C
2094088748748247210016703
sage: C%s
2703
sage: (C%s)%2
sage: m
sage:
```

```
sage: m2=randrange(2)
sage: r2=[randrange(2)
          for i in range(N)]
sage: C2=m2+sum(r2[i]*K[i]
...: for i in range(N))
sage: C2
-51722353737982737270129
sage: C2%s
4971
sage: (C2%s)%2
1
sage: m2
1
sage:
```

sage:

```
=randrange(2)
=[randrange(2)
 for i in range(N)]
=m+sum(r[i]*K[i]
 for i in range(N))
748748247210016703
%s
C%s)%2
```

sage:

e(2)

ge(2)

i]*K[i]

n range(N)]

n range(N))

210016703

sage: (C+C2)%s 7674 sage: (C*C2)%s 13436613 sage: Because C mod s are small enough of have $C + C' \mod s$ $(C' \bmod s)$ and C

Refinements: add to ciphertexts, boo Gentry) to control

 $(C \mod s)(C' \mod s)$

sage:

sage: (C+C2)%s
7674
sage: (C*C2)%s
13436613
sage:

23

Because $C \mod s$ and $C' \mod s$ are small enough compared have $C + C' \mod s = (C \mod s)$ $(C' \mod s)$ and $CC' \mod s$ $(C \mod s)(C' \mod s)$.

Refinements: add more nois to ciphertexts, bootstrap (20 Gentry) to control noise, etc.

sage: (C+C2)%s

```
sage: m2=randrange(2)
sage: r2=[randrange(2)
          for i in range(N)]
sage: C2=m2+sum(r2[i]*K[i]
...: for i in range(N))
sage: C2
-51722353737982737270129
sage: C2%s
4971
sage: (C2%s)%2
sage: m2
```

sage:

7674 sage: (C*C2)%s 13436613 sage: Because C mod s and C' mod s are small enough compared to s, have $C + C' \mod s = (C \mod s) +$ $(C' \mod s)$ and $CC' \mod s =$ $(C \mod s)(C' \mod s)$. Refinements: add more noise to ciphertexts, bootstrap (2009) Gentry) to control noise, etc.

```
2=randrange(2)
2=[randrange(2)
for i in range(N)]
2=m2+sum(r2[i]*K[i]
for i in range(N))
2
53737982737270129
```

C2%s)%2

2%s

23 sage: (C+C2)%s 7674 sage: (C*C2)%s 13436613 sage:

Because $C \mod s$ and $C' \mod s$ are small enough compared to s, have $C + C' \mod s = (C \mod s) + (C' \mod s)$ and $CC' \mod s = (C \mod s)(C' \mod s)$.

Refinements: add more noise to ciphertexts, bootstrap (2009 Gentry) to control noise, etc.

<u>Lattices</u>

This is a

This is a

ge(2)

nge(2)

in range(N)]

r2[i]*K[i]

in range(N))

37270129

sage: (C+C2)%s

7674

sage: (C*C2)%s

13436613

sage:

Because $C \mod s$ and $C' \mod s$ are small enough compared to s, have $C + C' \mod s = (C \mod s) + (C' \mod s)$ and $CC' \mod s = (C \mod s)(C' \mod s)$.

Refinements: add more noise to ciphertexts, bootstrap (2009 Gentry) to control noise, etc.

Lattices

This is a lettuce:

This is a lattice:

[N]

N))

sage: (C+C2)%s

7674

sage: (C*C2)%s

13436613

sage:

Because $C \mod s$ and $C' \mod s$ are small enough compared to s, have $C + C' \mod s = (C \mod s) + (C' \mod s)$ and $CC' \mod s = (C \mod s)(C' \mod s)$.

Refinements: add more noise to ciphertexts, bootstrap (2009 Gentry) to control noise, etc.

Lattices

This is a lettuce:

This is a lattice:

sage: (C+C2)%s

7674

sage: (C*C2)%s

13436613

sage:

Because $C \mod s$ and $C' \mod s$ are small enough compared to s, have $C + C' \mod s = (C \mod s) + (C' \mod s)$ and $CC' \mod s = (C \mod s)(C' \mod s)$.

Refinements: add more noise to ciphertexts, bootstrap (2009 Gentry) to control noise, etc.

Lattices

This is a lettuce:

This is a lattice:

C*C2)%s

 $C \mod s$ and $C' \mod s$ I enough compared to s, $+C' \mod s = (C \mod s) + C'$ s) and $CC' \mod s =$ $s)(C' \mod s).$

ents: add more noise rtexts, bootstrap (2009) to control noise, etc.

Lattices

This is a lettuce:

This is a lattice:

Lattices,

25

Assume are R-lin i.e., $\mathbf{R}V_1$ $\{r_1V_1 +$ is a *D*-d $\mathbf{Z}V_1 + \cdot$ $\{r_1V_1 +$ is a rank

 V_1, \ldots, N

is a **bas**i

and $C' \mod s$

compared to s,

 $C' \mod s =$

more noise

noise, etc.

otstrap (2009

(s).

 $s = (C \mod s) +$

This is a lettuce:

This is a lattice:

Lattices

Lattices, mathema

Assume that V_1 , . .

are R-linearly inde i.e., $\mathbf{R}V_1 + \cdots + \mathbf{F}$ $\{r_1V_1+\cdots+r_DV_n\}$ is a *D*-dimensiona

$$\mathbf{Z}V_1 + \cdots + \mathbf{Z}V_D = \{r_1V_1 + \cdots + r_DV_D\}$$

is a rank- D length

$$V_1, \ldots, V_D$$
 is a **basis** of this I

od s

to *s*,

009

ds) +

<u>Lattices</u>

This is a lettuce:

This is a lattice:

Lattices, mathematically

Assume that $V_1, \ldots, V_D \in \mathbb{R}$ are \mathbb{R} -linearly independent, i.e., $\mathbb{R}V_1 + \cdots + \mathbb{R}V_D = \{r_1V_1 + \cdots + r_DV_D : r_1, \ldots, r_1\}$ is a D-dimensional vector specific $\mathbb{R}V_1 + \cdots + r_D = \mathbb{R}V_1 + \cdots + r_D = \mathbb{R}V_2 + \cdots + \mathbb{R}V_D = \mathbb{R}V_1 + \mathbb{R}V_1 + \cdots + \mathbb{R}V_D = \mathbb{R}V_1 + \mathbb{R}V_1 + \mathbb{R}V_1 + \mathbb{R}V_2 + \mathbb{R}V_2$

$$\mathbf{Z}V_1 + \cdots + \mathbf{Z}V_D =$$

$$\{r_1V_1 + \cdots + r_DV_D : r_1, \ldots,$$

is a rank-D length-N lattice

$$V_1, \ldots, V_D$$

is a **basis** of this lattice.

Lattices

This is a lettuce:

This is a lattice:

25

Lattices, mathematically

Assume that $V_1, \ldots, V_D \in \mathbf{R}^N$ are \mathbf{R} -linearly independent, i.e., $\mathbf{R}V_1 + \cdots + \mathbf{R}V_D = \{r_1V_1 + \cdots + r_DV_D : r_1, \ldots, r_D \in \mathbf{R}\}$ is a D-dimensional vector space.

26

$$\mathbf{Z}V_1 + \cdots + \mathbf{Z}V_D =$$
 $\{r_1V_1 + \cdots + r_DV_D : r_1, \dots, r_D \in \mathbf{Z}\}$ is a rank- D length- N lattice.

$$V_1, \ldots, V_D$$
 is a **basis** of this lattice.

25

26

lettuce:

lattice:

Lattices, mathematically

Assume that $V_1, \ldots, V_D \in \mathbf{R}^N$ are \mathbf{R} -linearly independent, i.e., $\mathbf{R}V_1 + \cdots + \mathbf{R}V_D = \{r_1V_1 + \cdots + r_DV_D : r_1, \ldots, r_D \in \mathbf{R}\}$ is a D-dimensional vector space.

$$\mathbf{Z}V_1 + \cdots + \mathbf{Z}V_D =$$
 $\{r_1V_1 + \cdots + r_DV_D : r_1, \dots, r_D \in \mathbf{Z}\}$ is a rank- D length- N lattice.

$$V_1, \ldots, V_D$$
 is a **basis** of this lattice.

Short ve

what is sin $L = \mathbf{Z}$

Given V_1

"SVP: s What is

0.

1982 Lead (LLL) all computed with length of the second sec

Typically

0.

Lattices, mathematically

Assume that $V_1, \ldots, V_D \in \mathbf{R}^N$ are \mathbf{R} -linearly independent, i.e., $\mathbf{R}V_1 + \cdots + \mathbf{R}V_D = \{r_1V_1 + \cdots + r_DV_D : r_1, \ldots, r_D \in \mathbf{R}\}$ is a D-dimensional vector space.

$$\mathbf{Z}V_1+\cdots+\mathbf{Z}V_D=$$
 $\{r_1V_1+\cdots+r_DV_D:r_1,\ldots,r_D\in\mathbf{Z}\}$ is a rank- D length- N lattice.

 V_1, \ldots, V_D is a **basis** of this lattice.

Short vectors in la

Given V_1, V_2, \ldots, V_n

what is shortest verified in $L = \mathbf{Z}V_1 + \cdots$

"SVP: shortest-vec What is shortest n

1982 Lenstra-Lens (LLL) algorithm runce computes a nonze with length at molength of shortest Typically $\approx 1.02^D$

Lattices, mathematically

Assume that $V_1, \ldots, V_D \in \mathbf{R}^N$ are \mathbf{R} -linearly independent, i.e., $\mathbf{R}V_1 + \cdots + \mathbf{R}V_D = \{r_1V_1 + \cdots + r_DV_D : r_1, \ldots, r_D \in \mathbf{R}\}$ is a D-dimensional vector space.

$$\mathbf{Z}V_1 + \cdots + \mathbf{Z}V_D =$$
 $\{r_1V_1 + \cdots + r_DV_D : r_1, \dots, r_D \in \mathbf{Z}\}$ is a rank- D length- N lattice.

$$V_1, \ldots, V_D$$
 is a **basis** of this lattice.

Short vectors in lattices

Given $V_1, V_2, \dots, V_D \in \mathbf{Z}^N$, what is shortest vector in $L = \mathbf{Z}V_1 + \dots + \mathbf{Z}V_D$?

What is shortest nonzero ve 1982 Lenstra-Lenstra-Lovás (LLL) algorithm runs in poly computes a nonzero vector i with length at most $2^{D/2}$ tirlength of shortest nonzero very Typically $\approx 1.02^D$ instead of

"SVP: shortest-vector proble

Lattices, mathematically

Assume that $V_1, \ldots, V_D \in \mathbf{R}^N$ are \mathbf{R} -linearly independent, i.e., $\mathbf{R}V_1 + \cdots + \mathbf{R}V_D = \{r_1V_1 + \cdots + r_DV_D : r_1, \ldots, r_D \in \mathbf{R}\}$ is a D-dimensional vector space.

$$\mathbf{Z}V_1 + \cdots + \mathbf{Z}V_D =$$
 $\{r_1V_1 + \cdots + r_DV_D : r_1, \dots, r_D \in \mathbf{Z}\}$ is a rank- D length- N lattice.

 V_1, \ldots, V_D is a **basis** of this lattice.

Short vectors in lattices

Given $V_1, V_2, \ldots, V_D \in \mathbf{Z}^N$, what is shortest vector in $L = \mathbf{Z}V_1 + \cdots + \mathbf{Z}V_D$?

"SVP: shortest-vector problem": What is shortest nonzero vector?

1982 Lenstra-Lenstra-Lovász (LLL) algorithm runs in poly time, computes a nonzero vector in L with length at most $2^{D/2}$ times length of shortest nonzero vector. Typically $\approx 1.02^D$ instead of $2^{D/2}$.

that $V_1, \ldots, V_D \in \mathbf{R}^N$

nearly independent,

$$+\cdots + \mathbf{R}V_D =$$

$$\cdots + r_D V_D : r_1, \ldots, r_D \in \mathbf{R}$$

imensional vector space.

$$\cdots + \mathbf{Z}V_D =$$

$$\cdots + r_D V_D : r_1, \ldots, r_D \in \mathbf{Z}$$

c-D length-N lattice.

is of this lattice.

Short vectors in lattices

Given $V_1, V_2, \ldots, V_D \in \mathbf{Z}^N$, what is shortest vector in $L = \mathbf{Z}V_1 + \cdots + \mathbf{Z}V_D$?

0.

"SVP: shortest-vector problem": What is shortest nonzero vector?

1982 Lenstra-Lenstra-Lovász (LLL) algorithm runs in poly time, computes a nonzero vector in Lwith length at most $2^{D/2}$ times length of shortest nonzero vector. Typically $\approx 1.02^D$ instead of $2^{D/2}$.

Subset-s

One way where C

Choose

$$V_0 = (-$$

$$V_1 = (K$$

$$V_2 = (K$$

$$V_N = (k$$

Define L

L contai

$$V_0 + r_1 V$$

(0, $r_1 \lambda$, .

tically

 \mathbf{R}^{N} , \mathbf{R}^{N} pendent,

 $\{V_D = 0: r_1, \dots, r_D \in \mathbf{R}\}$ I vector space.

 $\{r_1,\ldots,r_D\in\mathbf{Z}\}$ -N lattice.

attice.

Short vectors in lattices

Given $V_1, V_2, \ldots, V_D \in \mathbf{Z}^N$, what is shortest vector in $L = \mathbf{Z}V_1 + \cdots + \mathbf{Z}V_D$?

"SVP: shortest-vector problem": What is shortest nonzero vector?

1982 Lenstra-Lenstra-Lovász (LLL) algorithm runs in poly time, computes a nonzero vector in L with length at most $2^{D/2}$ times length of shortest nonzero vector. Typically $\approx 1.02^D$ instead of $2^{D/2}$.

Subset-sum lattice

One way to find (where $C = r_1K_1 + r_1K_1$

Choose λ . Define

$$V_0 = (-C, 0, 0, \dots)$$

$$V_1 = (K_1, \lambda, 0, \ldots)$$

$$V_2 = (K_2, 0, \lambda, \dots)$$

. . . ,

$$V_{N} = (K_{N}, 0, 0, ...$$

Define $L = \mathbf{Z}V_0 + L$ contains the sho

$$V_0 + r_1V_1 + \cdots +$$

$$(0, r_1\lambda, \ldots, r_N\lambda).$$

N

 $r_D \in \mathbf{R}$

ace.

 $r_D \in \mathbf{Z}$

Short vectors in lattices

Given $V_1, V_2, \ldots, V_D \in \mathbf{Z}^N$, what is shortest vector in $L = \mathbf{Z}V_1 + \cdots + \mathbf{Z}V_D$?

"SVP: shortest-vector problem": What is shortest nonzero vector?

1982 Lenstra–Lenstra–Lovász (LLL) algorithm runs in poly time, computes a nonzero vector in L with length at most $2^{D/2}$ times length of shortest nonzero vector. Typically $\approx 1.02^D$ instead of $2^{D/2}$.

Subset-sum lattices

One way to find (r_1, \ldots, r_N) where $C = r_1 K_1 + \cdots + r_N K_N$

Choose λ . Define

$$V_0 = (-C, 0, 0, \dots, 0),$$

$$V_1 = (K_1, \lambda, 0, \ldots, 0),$$

$$V_2 = (K_2, 0, \lambda, ..., 0),$$

. . ,

$$V_{\mathcal{N}}=(K_{\mathcal{N}},0,0,\ldots,\lambda).$$

 $(0, r_1\lambda, \ldots, r_N\lambda).$

Define $L = \mathbf{Z}V_0 + \cdots + \mathbf{Z}V_N$ L contains the short vector $V_0 + r_1V_1 + \cdots + r_NV_N =$ Given $V_1, V_2, \ldots, V_D \in \mathbf{Z}^N$, what is shortest vector in $L = \mathbf{Z}V_1 + \cdots + \mathbf{Z}V_D$?

"SVP: shortest-vector problem": What is shortest nonzero vector?

1982 Lenstra-Lenstra-Lovász (LLL) algorithm runs in poly time, computes a nonzero vector in L with length at most $2^{D/2}$ times length of shortest nonzero vector. Typically $\approx 1.02^D$ instead of $2^{D/2}$.

Subset-sum lattices

One way to find $(r_1, ..., r_N)$ where $C = r_1 K_1 + \cdots + r_N K_N$:

Choose λ . Define

$$V_0 = (-C, 0, 0, \dots, 0),$$

$$V_1 = (K_1, \lambda, 0, \ldots, 0),$$

$$V_2 = (K_2, 0, \lambda, \ldots, 0),$$

. . . ,

$$V_{N} = (K_{N}, 0, 0, ..., \lambda).$$

Define $L = \mathbf{Z}V_0 + \cdots + \mathbf{Z}V_N$.

L contains the short vector

$$V_0 + r_1 V_1 + \cdots + r_N V_N =$$

(0, $r_1 \lambda$, ..., $r_N \lambda$).

ctors in lattices

$$\{V_1, V_2, \dots, V_D \in \mathbf{Z}^N, \}$$

shortest vector $\{V_1 + \dots + \mathbf{Z}V_D\}$

shortest nonzero vector? nstra-Lenstra-Lovász gorithm runs in poly time, as a nonzero vector in L gth at most $2^{D/2}$ times f shortest nonzero vector. $\chi \approx 1.02^D$ instead of $2^{D/2}$.

hortest-vector problem":

Subset-sum lattices

One way to find $(r_1, ..., r_N)$ where $C = r_1K_1 + \cdots + r_NK_N$:

Choose λ . Define

$$V_0 = (-C, 0, 0, \dots, 0),$$

$$V_1 = (K_1, \lambda, 0, \ldots, 0),$$

$$V_2 = (K_2, 0, \lambda, ..., 0),$$

. . ,

$$V_{\mathcal{N}} = (K_{\mathcal{N}}, 0, 0, \ldots, \lambda).$$

Define $L = \mathbf{Z}V_0 + \cdots + \mathbf{Z}V_N$.

L contains the short vector

$$V_0 + r_1V_1 + \cdots + r_NV_N =$$

(0, $r_1\lambda$, ..., $r_N\lambda$).

LLL is fa finds thi 1991 Scl

algorithr

vs.-short

lattice.

2012 Sc that mo subset-s

Is this tr

exponen

2011 Be

ttices

$$m{\mathcal{Z}}_D \in \mathbf{Z}^N,$$
ector $+\mathbf{Z}V_D?$

ctor problem":
nonzero vector?
stra-Lovász
uns in poly time,
ro vector in Lst $2^{D/2}$ times
nonzero vector.

instead of $2^{D/2}$.

Subset-sum lattices

One way to find
$$(r_1, ..., r_N)$$

where $C = r_1K_1 + \cdots + r_NK_N$:

Choose λ . Define

$$V_0 = (-C, 0, 0, \dots, 0),$$

$$V_1 = (K_1, \lambda, 0, \ldots, 0),$$

$$V_2 = (K_2, 0, \lambda, ..., 0),$$

. . ,

$$V_{\mathcal{N}} = (K_{\mathcal{N}}, 0, 0, \ldots, \lambda).$$

Define $L = \mathbf{Z}V_0 + \cdots + \mathbf{Z}V_N$.

L contains the short vector

$$V_0 + r_1V_1 + \cdots + r_NV_N =$$

(0, $r_1\lambda$, ..., $r_N\lambda$).

LLL is fast but aln finds this short vec

1991 Schnorr-Euc

algorithm spends in LLL finding shorted lattice. Many substitutes were shortness impressions.

2012 Schnorr–She that modern form subset-sum proble 2011 Becker–Coro

Is this true? Open exponent of this a

Subset-sum lattices

One way to find $(r_1, ..., r_N)$ where $C = r_1 K_1 + \cdots + r_N K_N$:

Choose λ . Define

$$V_0 = (-C, 0, 0, \dots, 0),$$

$$V_1 = (K_1, \lambda, 0, \ldots, 0),$$

$$V_2 = (K_2, 0, \lambda, \ldots, 0),$$

- - - ,

$$V_{N} = (K_{N}, 0, 0, ..., \lambda).$$

Define $L = \mathbf{Z}V_0 + \cdots + \mathbf{Z}V_N$.

L contains the short vector

$$V_0 + r_1 V_1 + \cdots + r_N V_N =$$

$$(0, r_1\lambda, \ldots, r_N\lambda).$$

LLL is fast but almost never finds this short vector in L.

1991 Schnorr–Euchner "BK" algorithm spends more time LLL finding shorter vectors i lattice. Many subsequent til vs.-shortness improvements.

2012 Schnorr–Shevchenko c that modern form of BKZ so subset-sum problems faster 2011 Becker–Coron–Joux.

Is this true? Open: What's exponent of this algorithm?

em": ctor?

z z time,

n L

nes .

ector. $2^{D/2}$

Subset-sum lattices

One way to find $(r_1, ..., r_N)$ where $C = r_1 K_1 + \cdots + r_N K_N$:

Choose λ . Define

$$V_0 = (-C, 0, 0, \dots, 0),$$

$$V_1 = (K_1, \lambda, 0, \ldots, 0),$$

$$V_2 = (K_2, 0, \lambda, \ldots, 0),$$

- - - ,

$$V_{N} = (K_{N}, 0, 0, ..., \lambda).$$

Define $L = \mathbf{Z}V_0 + \cdots + \mathbf{Z}V_N$.

L contains the short vector

$$V_0 + r_1V_1 + \cdots + r_NV_N =$$

(0, $r_1\lambda$, ..., $r_N\lambda$).

LLL is fast but almost never finds this short vector in *L*.

1991 Schnorr–Euchner "BKZ" algorithm spends more time than LLL finding shorter vectors in any lattice. Many subsequent timeves.-shortness improvements.

2012 Schnorr–Shevchenko claim that modern form of BKZ solves subset-sum problems faster than 2011 Becker–Coron–Joux.

Is this true? Open: What's the exponent of this algorithm?

um lattices

to find
$$(r_1, \ldots, r_N)$$

= $r_1K_1 + \cdots + r_NK_N$:

$$\lambda$$
. Define

$$C, 0, 0, \ldots, 0),$$

$$(1, \lambda, 0, \ldots, 0),$$

$$(2, 0, \lambda, \ldots, 0),$$

$$(N, 0, 0, \ldots, \lambda).$$

$$\mathbf{z} = \mathbf{Z}V_0 + \cdots + \mathbf{Z}V_N.$$

ns the short vector

$$(1 + \cdots + r_N V_N = 1)$$

..., $r_N \lambda$).

LLL is fast but almost never finds this short vector in L.

1991 Schnorr-Euchner "BKZ" algorithm spends more time than LLL finding shorter vectors in any lattice. Many subsequent timevs.-shortness improvements.

2012 Schnorr-Shevchenko claim that modern form of BKZ solves subset-sum problems faster than 2011 Becker-Coron-Joux.

Is this true? Open: What's the exponent of this algorithm?

Lattice a

Recall K Each *u_i* Note q_i

Define $V_1 = (E_1)^2$

$$V_2 = (0,$$

$$V_3 = (0,$$

$$V_{\mathsf{N}}=(0$$

Define L L contai

$$(q_1E, q_1$$

 $(q_1E, 2q_1)$

 r_1,\ldots,r_N

 $\cdots + r_N K_N$:

, 0), , 0),

, 0),

 (λ) .

 $\cdots + \mathbf{Z}V_{N}$.

ort vector

 $r_{N}V_{N}=$

LLL is fast but almost never finds this short vector in L.

1991 Schnorr–Euchner "BKZ" algorithm spends more time than LLL finding shorter vectors in any lattice. Many subsequent timevs.-shortness improvements.

2012 Schnorr–Shevchenko claim that modern form of BKZ solves subset-sum problems faster than 2011 Becker–Coron–Joux.

Is this true? Open: What's the exponent of this algorithm?

Lattice attacks on

Recall $K_i = 2u_i + 2u_i$ Each u_i is small: Note $q_j K_i - q_i K_j$

Define

$$V_1 = (E, K_2, K_3, ...$$

$$V_2 = (0, -K_1, 0, ...$$

$$V_3 = (0, 0, -K_1, ...$$

- - ,

$$V_N = (0, 0, 0, \dots,$$

Define $L = \mathbf{Z}V_1 + L$ L contains $q_1V_1 + (q_1E, q_1K_2 - q_2K_2)$

$$(q_1E, 2q_1u_2 - 2q_2)$$

LLL is fast but almost never finds this short vector in L.

1991 Schnorr-Euchner "BKZ" algorithm spends more time than LLL finding shorter vectors in any lattice. Many subsequent timevs.-shortness improvements.

2012 Schnorr–Shevchenko claim that modern form of BKZ solves subset-sum problems faster than 2011 Becker-Coron-Joux.

Is this true? Open: What's the exponent of this algorithm?

Lattice attacks on DGHV ke

Recall $K_i = 2u_i + sq_i \approx sq_i$ Each u_i is small: $u_i < E$. Note $q_i K_i - q_i K_i = 2q_i u_i -$

Define

Define
$$V_1 = (E, K_2, K_3, \dots, K_N);$$
 $V_2 = (0, -K_1, 0, \dots, 0);$ $V_3 = (0, 0, -K_1, \dots, 0);$ $\dots;$ $V_N = (0, 0, 0, \dots, -K_1).$

Define
$$L = \mathbf{Z}V_1 + \cdots + \mathbf{Z}V_N$$

 L contains $q_1V_1 + \cdots + q_NV_1$
 $(q_1E, q_1K_2 - q_2K_1, \ldots) =$
 $(q_1E, 2q_1u_2 - 2q_2u_1, \ldots).$

1991 Schnorr–Euchner "BKZ" algorithm spends more time than LLL finding shorter vectors in any lattice. Many subsequent timevs.-shortness improvements.

2012 Schnorr–Shevchenko claim that modern form of BKZ solves subset-sum problems faster than 2011 Becker–Coron–Joux.

Is this true? Open: What's the exponent of this algorithm?

Lattice attacks on DGHV keys

Recall $K_i = 2u_i + sq_i \approx sq_i$. Each u_i is small: $u_i < E$. Note $q_i K_i - q_i K_i = 2q_i u_i - 2q_i u_i$.

Define

$$V_1 = (E, K_2, K_3, ..., K_N);$$

 $V_2 = (0, -K_1, 0, ..., 0);$
 $V_3 = (0, 0, -K_1, ..., 0);$
...;
 $V_N = (0, 0, 0, ..., -K_1).$
Define $L = \mathbf{Z}V_1 + ... + \mathbf{Z}V_N.$
 $L \text{ contains } q_1V_1 + ... + q_NV_N = (q_1E, q_1K_2 - q_2K_1, ...) = (q_1E, 2q_1u_2 - 2q_2u_1, ...).$

ast but almost never s short vector in L.

hnorr–Euchner "BKZ" n spends more time than

ing shorter vectors in any

Many subsequent time-

ness improvements.

hnorr-Shevchenko claim dern form of BKZ solves um problems faster than cker-Coron-Joux.

rue? Open: What's the tof this algorithm?

Lattice attacks on DGHV keys

Recall $K_i = 2u_i + sq_i \approx sq_i$.

Each u_i is small: $u_i < E$.

Note $q_j K_i - q_i K_j = 2q_j u_i - 2q_i u_j$.

Define

$$V_1 = (E, K_2, K_3, ..., K_N);$$

$$V_2 = (0, -K_1, 0, \dots, 0);$$

$$V_3 = (0, 0, -K_1, \ldots, 0);$$

. . . ,

$$V_N = (0, 0, 0, \dots, -K_1).$$

Define $L = \mathbf{Z}V_1 + \cdots + \mathbf{Z}V_N$.

L contains $q_1V_1 + \cdots + q_NV_N =$

$$(q_1E, q_1K_2 - q_2K_1, \ldots) =$$

$$(q_1E, 2q_1u_2 - 2q_2u_1, \ldots).$$

sage: V

sage: V

sage: V

sage: V

sage: V

sage: q

sage: q

5964878

sage: r

9848873

sage: s

9848873

hner "BKZ"
more time than
r vectors in any
sequent timeovements.

vchenko claim of BKZ solves ms faster than n–Joux.

: What's the Igorithm?

Lattice attacks on DGHV keys

Recall $K_i = 2u_i + sq_i \approx sq_i$.

Each u_i is small: $u_i < E$.

Note $q_j K_i - q_i K_j = 2q_j u_i - 2q_i u_j$.

Define

$$V_1 = (E, K_2, K_3, \dots, K_N);$$

$$V_2 = (0, -K_1, 0, \dots, 0);$$

$$V_3 = (0, 0, -K_1, \dots, 0);$$

. . ,

$$V_N = (0, 0, 0, \dots, -K_1).$$

Define $L = \mathbf{Z}V_1 + \cdots + \mathbf{Z}V_N$.

L contains $q_1V_1 + \cdots + q_NV_N =$

$$(q_1E, q_1K_2 - q_2K_1, \ldots) =$$

$$(q_1E, 2q_1u_2 - 2q_2u_1, \ldots).$$

sage: V=matrix.i

sage: V=-K[0]*V

sage: Vtop=copy(

sage: Vtop[0]=E

sage: V[0]=Vtop

sage: q0=V.LLL()

sage: q0

596487875

sage: round(K[0]

984887308997925

sage: s

984887308997925

Lattice attacks on DGHV keys

Recall $K_i = 2u_i + sq_i \approx sq_i$.

Each u_i is small: $u_i < E$.

Note $q_i K_i - q_i K_j = 2q_i u_i - 2q_i u_j$.

Define

$$V_1 = (E, K_2, K_3, \dots, K_N);$$

$$V_2 = (0, -K_1, 0, \dots, 0);$$

$$V_3 = (0, 0, -K_1, \dots, 0);$$

. . . ;

$$V_N = (0, 0, 0, \dots, -K_1).$$

Define $L = \mathbf{Z}V_1 + \cdots + \mathbf{Z}V_N$.

L contains $q_1V_1 + \cdots + q_NV_N =$

$$(q_1E, q_1K_2 - q_2K_1, \ldots) =$$

 $(q_1E, 2q_1u_2 - 2q_2u_1, \ldots).$

sage: V=matrix.identity(N

sage: V=-K[0]*V

sage: Vtop=copy(K)

sage: Vtop[0]=E

sage: V[0]=Vtop

sage: q0=V.LLL()[0][0]/E

sage: q0

596487875

sage: round(K[0]/q0)

984887308997925

sage: s

984887308997925

sage:

Z" than

n any

ne-

laim

olves than

the

Lattice attacks on DGHV keys

Recall $K_i = 2u_i + sq_i \approx sq_i$.

Each u_i is small: $u_i < E$.

Note $q_j K_i - q_i K_j = 2q_j u_i - 2q_i u_j$.

Define

$$V_1 = (E, K_2, K_3, \dots, K_N);$$

$$V_2 = (0, -K_1, 0, \dots, 0);$$

$$V_3 = (0, 0, -K_1, \dots, 0);$$

. . . ,

$$V_{N} = (0, 0, 0, \dots, -K_{1}).$$

Define $L = \mathbf{Z}V_1 + \cdots + \mathbf{Z}V_N$.

L contains $q_1V_1 + \cdots + q_NV_N =$

$$(q_1E, q_1K_2 - q_2K_1, \ldots) =$$

$$(q_1E, 2q_1u_2 - 2q_2u_1, \ldots).$$

sage: V=matrix.identity(N)

sage: V=-K[0]*V

sage: Vtop=copy(K)

sage: Vtop[0]=E

sage: V[0]=Vtop

sage: q0=V.LLL()[0][0]/E

sage: q0

596487875

sage: round(K[0]/q0)

984887308997925

sage: s

984887308997925

attacks on DGHV keys

$$X_i = 2u_i + sq_i \approx sq_i$$
.

is small: $u_i < E$.

$$K_i - q_i K_j = 2q_j u_i - 2q_i u_j.$$

$$, K_2, K_3, \ldots, K_N);$$

$$-K_1, 0, \ldots, 0);$$

$$0, -K_1, \ldots, 0);$$

$$, 0, 0, \ldots, -K_1).$$

$$\mathbf{z} = \mathbf{Z}V_1 + \cdots + \mathbf{Z}V_N.$$

ns
$$q_1V_1 + \cdots + q_NV_N =$$

$$K_2 - q_2 K_1, \ldots) =$$

$$y_1u_2-2q_2u_1,\ldots).$$

sage:
$$V=-K[0]*V$$

(1024,-111115794301

sage: V

742362

688178

-357168

102334

112142

-11096

-235628

sage: V

(0, -58)

0, 0,

DGHV keys

$$sq_i pprox sq_i.$$
 $u_i < E.$

 $=2q_iu_i-2q_iu_i$.

$$-K_{1}$$
).

$$\cdots + \mathbf{Z}V_{N}$$
.
 $\cdots + q_{N}V_{N} =$
 $(1, \dots) =$
 (u_{1}, \dots) .

sage: V=matrix.identity(N)

sage: V=-K[0]*V

sage: Vtop=copy(K)

sage: Vtop[0]=E

sage: V[0]=Vtop

sage: q0=V.LLL()[0][0]/E

sage: q0

596487875

sage: round(K[0]/q0)

984887308997925

sage: s

984887308997925

sage:

(1024, -11115391791007

sage: V[0]

794301459533783

688178021083749

742362470968200

102334582783153

-35716867939855

112142161911996

-11096748622762

-23562893778500

sage: V[1]

(0, -58747333805)

0, 0, 0, 0, 0,

984887308997925

sage:

2ys

sage: V[0] (1024,-11115391791007200837703 794301459533783434896055 68817802108374958901751, 742362470968200823035396 102334582783153951505479 -35716867939855887673000 112142161911996460105144 -11096748622762224955871 -23562893778500377052338 sage: V[1] (0, -58747333805864066265

0, 0, 0, 0, 0, 0, 0, 0

```
sage: V=matrix.identity(N)
```

sage: V=-K[0]*V

sage: Vtop=copy(K)

sage: Vtop[0]=E

sage: V[0]=Vtop

sage: q0=V.LLL()[0][0]/E

sage: q0

596487875

sage: round(K[0]/q0)

984887308997925

sage: s

984887308997925

sage:

sage: V[0] (1024,-1111539179100720083770339, 794301459533783434896055, 68817802108374958901751, 742362470968200823035396, 1023345827831539515054795, -357168679398558876730006, 1121421619119964601051443, -1109674862276222495587129, -235628937785003770523381) sage: V[1] (0, -587473338058640662659869,

0, 0, 0, 0, 0, 0, 0, 0

```
31
                                     32
   sage: V[0]
                                        sage: V
                                         (610803
   (1024,
                                         370302
    -1111539179100720083770339,
                                         -225618
    794301459533783434896055,
                                         110012
    68817802108374958901751,
    742362470968200823035396,
                                          135946
    1023345827831539515054795,
                                        sage: q
                                        sage: q
    -357168679398558876730006,
    1121421619119964601051443,
                                        6108035
    -1109674862276222495587129,
                                        sage: q
    -235628937785003770523381)
                                        1056189
   sage: V[1]
                                        sage: q
   (0, -587473338058640662659869,
                                         1742566
    0, 0, 0, 0, 0, 0, 0, 0
                                        sage:
   sage:
```

=matrix.identity(N)

O=V.LLL()[O][O]/E

 $\operatorname{ound}(K[0]/q0)$

08997925

08997925

=-K[O]*V

top[0]=E

[0]=Vtop

75

top=copy(K)

```
dentity(N)
[0][0]/E
/q0)
```

```
sage: V[0]
(1024,
 -1111539179100720083770339,
 794301459533783434896055,
 68817802108374958901751,
 742362470968200823035396,
 1023345827831539515054795,
 -357168679398558876730006,
 1121421619119964601051443,
 -1109674862276222495587129,
 -235628937785003770523381)
sage: V[1]
(0, -587473338058640662659869,
0, 0, 0, 0, 0, 0, 0, 0
sage:
```

sage: V.LLL()[0] (610803584000, 1 37030242384, 84 -225618319442, 1100126026284, 1359463649048, sage: q=[Ki//s f]sage: q[0]*E 610803584000 sage: q[0]*K[1]-1056189937254 sage: q[0]*K[9]-174256676348 sage:

```
sage: V[0]
(1024,
-1111539179100720083770339,
 794301459533783434896055,
68817802108374958901751,
742362470968200823035396,
 1023345827831539515054795,
 -357168679398558876730006,
 1121421619119964601051443,
-1109674862276222495587129,
-235628937785003770523381)
sage: V[1]
(0, -587473338058640662659869,
0, 0, 0, 0, 0, 0, 0)
sage:
```

```
sage: V.LLL()[0]
(610803584000, 1056189937
 37030242384, 84589845469
 -225618319442, 363547143
 1100126026284, -31315097
 1359463649048, 174256676
sage: q=[Ki//s for Ki in
sage: q[0]*E
610803584000
sage: q[0]*K[1]-q[1]*K[0]
1056189937254
sage: q[0]*K[9]-q[9]*K[0]
174256676348
sage:
```

```
sage: V[0]
(1024,
 -1111539179100720083770339,
 794301459533783434896055,
 68817802108374958901751,
 742362470968200823035396,
 1023345827831539515054795,
 -357168679398558876730006,
 1121421619119964601051443,
 -1109674862276222495587129,
 -235628937785003770523381)
sage: V[1]
(0, -587473338058640662659869,
0, 0, 0, 0, 0, 0, 0)
sage:
```

```
sage: V.LLL()[0]
(610803584000, 1056189937254,
 37030242384, 845898454698,
 -225618319442, 363547143644,
 1100126026284, -313150978512,
 1359463649048, 174256676348)
sage: q=[Ki//s for Ki in K]
sage: q[0]*E
610803584000
sage: q[0]*K[1]-q[1]*K[0]
1056189937254
sage: q[0]*K[9]-q[9]*K[0]
174256676348
sage:
```

2009 DC

can choo

these lat

2011 Co

Tibouch

by modi

shows th

encryptic

with a s

e.g. all a

with pul

2012 Ch

Need big

```
[0]
39179100720083770339,
459533783434896055,
02108374958901751,
470968200823035396,
5827831539515054795,
8679398558876730006,
1619119964601051443,
74862276222495587129,
8937785003770523381)
[1]
7473338058640662659869,
0, 0, 0, 0, 0, 0
```

```
sage: V.LLL()[0]
(610803584000, 1056189937254,
37030242384, 845898454698,
-225618319442, 363547143644,
 1100126026284, -313150978512,
 1359463649048, 174256676348)
sage: q=[Ki//s for Ki in K]
sage: q[0]*E
610803584000
sage: q[0]*K[1]-q[1]*K[0]
1056189937254
sage: q[0]*K[9]-q[9]*K[0]
174256676348
sage:
```

```
20083770339,
434896055,
58901751,
823035396,
9515054795,
8876730006,
4601051443,
22495587129,
3770523381)
8640662659869,
0, 0, 0
```

```
sage: V.LLL()[0]
(610803584000, 1056189937254,
37030242384, 845898454698,
 -225618319442, 363547143644,
 1100126026284, -313150978512,
 1359463649048, 174256676348)
sage: q=[Ki//s for Ki in K]
sage: q[0]*E
610803584000
sage: q[0]*K[1]-q[1]*K[0]
1056189937254
sage: q[0]*K[9]-q[9]*K[0]
174256676348
sage:
```

2009 DGHV analy can choose key siz these lattice attac 2011 Coron-Mand Tibouchi: reduce by modifying DGF shows that fully he encryption can be with a simple sche e.g. all attacks tak with public keys o 2012 Chen-Nguye Need bigger DGH'

```
sage: V.LLL()[0]
           (610803584000, 1056189937254,
39,
           37030242384, 845898454698,
           -225618319442, 363547143644,
           1100126026284, -313150978512,
           1359463649048, 174256676348)
5,
          sage: q=[Ki//s for Ki in K]
          sage: q[0]*E
6,
          610803584000
3,
          sage: q[0]*K[1]-q[1]*K[0]
29,
1)
          1056189937254
          sage: q[0]*K[9]-q[9]*K[0]
9869,
          174256676348
          sage:
```

32

2009 DGHV analysis: can choose key sizes where these lattice attacks fail.

33

2011 Coron–Mandal–Naccad Tibouchi: reduce key sizes by modifying DGHV. "This shows that fully homomorph encryption can be implement with a simple scheme."

e.g. all attacks take $\ge 2^{72}$ cy with public keys only 802ME

2012 Chen-Nguyen: faster a Need bigger DGHV/CMNT

sage: V.LLL()[0]

(610803584000, 1056189937254,

37030242384, 845898454698,

-225618319442, 363547143644,

1100126026284, -313150978512,

1359463649048, 174256676348)

sage: q=[Ki//s for Ki in K]

sage: q[0]*E

610803584000

sage: q[0]*K[1]-q[1]*K[0]

1056189937254

sage: q[0]*K[9]-q[9]*K[0]

174256676348

sage:

2009 DGHV analysis: can choose key sizes where these lattice attacks fail.

2011 Coron–Mandal–Naccache–Tibouchi: reduce key sizes by modifying DGHV. "This shows that fully homomorphic encryption can be implemented with a simple scheme."

e.g. all attacks take $\geq 2^{72}$ cycles with public keys only 802MB.

2012 Chen-Nguyen: faster attack. Need bigger DGHV/CMNT keys.

.LLL()[0] 584000, 1056189937254, 42384, 845898454698, 3319442, 363547143644, 6026284, -313150978512, 3649048, 174256676348) =[Ki//s for Ki in K] [0] *E 34000 [0]*K[1]-q[1]*K[0]

[0] *K [9] -q [9] *K [0]

937254

76348

2009 DGHV analysis: can choose key sizes where these lattice attacks fail.

2011 Coron–Mandal–Naccache–Tibouchi: reduce key sizes by modifying DGHV. "This shows that fully homomorphic encryption can be implemented with a simple scheme."

e.g. all attacks take $\geq 2^{72}$ cycles with public keys only 802MB.

2012 Chen-Nguyen: faster attack. Need bigger DGHV/CMNT keys.

Big atta 1991 Ch

Pfitzmandefine *C* for suita Simple,

finding (computi

Typical (

Very eas

C is "pro

mathem

q[1]*K[0]

q[9]*K[0]

2009 DGHV analysis: can choose key sizes where these lattice attacks fail.

2011 Coron–Mandal–Naccache–Tibouchi: reduce key sizes by modifying DGHV. "This shows that fully homomorphic encryption can be implemented with a simple scheme."

e.g. all attacks take $\geq 2^{72}$ cycles with public keys only 802MB.

2012 Chen-Nguyen: faster attack. Need bigger DGHV/CMNT keys.

Big attack surface

1991 Chaum-van

Pfitzmann: choose define C(x, y) = 4 for suitable ranges. Simple, beautiful, Very easy security finding C collision computing a discrete

Typical exaggeration of the control of the control

254, 8, 644, 8512, 348) K] 2009 DGHV analysis: can choose key sizes where these lattice attacks fail.

2011 Coron–Mandal–Naccache–Tibouchi: reduce key sizes by modifying DGHV. "This shows that fully homomorphic encryption can be implemented with a simple scheme."

e.g. all attacks take $\geq 2^{72}$ cycles with public keys only 802MB.

2012 Chen-Nguyen: faster attack. Need bigger DGHV/CMNT keys.

Big attack surfaces are dang

1991 Chaum-van Heijst-Pfitzmann: choose p sensible define $C(x, y) = 4^{x}9^{y}$ mod pfor suitable ranges of x and

Simple, beautiful, structured Very easy security reduction finding *C* collision implies computing a discrete logarit

Typical exaggerations: *C* is "provably secure"; *C* is "cryptographically collision-formathematical proofs".

2009 DGHV analysis: can choose key sizes where these lattice attacks fail.

2011 Coron–Mandal–Naccache–Tibouchi: reduce key sizes by modifying DGHV. "This shows that fully homomorphic encryption can be implemented with a simple scheme."

e.g. all attacks take $\geq 2^{72}$ cycles with public keys only 802MB.

2012 Chen-Nguyen: faster attack. Need bigger DGHV/CMNT keys.

Big attack surfaces are dangerous

1991 Chaum-van Heijst-Pfitzmann: choose p sensibly; define $C(x, y) = 4^x 9^y \mod p$ for suitable ranges of x and y.

Simple, beautiful, structured.

Very easy security reduction:

finding *C* collision implies

computing a discrete logarithm.

Typical exaggerations:

C is "provably secure"; C is "cryptographically collision-free"; "security follows from rigorous mathematical proofs".

GHV analysis:

tice attacks fail.

ron-Mandal-Naccachei: reduce key sizes
fying DGHV. "This
nat fully homomorphic
on can be implemented

of the state $\geq 2^{72}$ cycles blic keys only 802MB.

imple scheme."

en-Nguyen: faster attack. gger DGHV/CMNT keys.

Big attack surfaces are dangerous

1991 Chaum-van Heijst-Pfitzmann: choose p sensibly; define $C(x, y) = 4^x 9^y \mod p$ for suitable ranges of x and y.

Simple, beautiful, structured.

Very easy security reduction:

finding *C* collision implies

computing a discrete logarithm.

Typical exaggerations:

C is "provably secure"; C is

"cryptographically collision-free";

"security follows from rigorous

mathematical proofs".

Security 1922 Kr 1986 Co Schroep 1993 Go 1993 Sc 1994 Sh many su from peo pre-quar

C is very No matt is, obtain "unstruc

function

sis:

es where ks fail.

lal-Naccache-key sizes
IV. "This omomorphic implemented

 $e \ge 2^{72}$ cycles nly 802MB.

eme."

n: faster attack.V/CMNT keys.

Big attack surfaces are dangerous

1991 Chaum-van Heijst-Pfitzmann: choose p sensibly; define $C(x, y) = 4^{x}9^{y} \mod p$ for suitable ranges of x and y.

Simple, beautiful, structured. Very easy security reduction: finding *C* collision implies computing a discrete logarithm.

Typical exaggerations:

C is "provably secure"; C is

"cryptographically collision-free";

"security follows from rigorous

mathematical proofs".

Security losses in 1922 Kraitchik (in 1986 Coppersmith Schroeppel (NFS 1993 Gordon (gen 1993 Schirokauer 1994 Shor (quanti many subsequent from people who pre-quantum secui

C is very bad cryp No matter what u is, obtain better se "unstructured" co function designs se

Big attack surfaces are dangerous

1991 Chaum-van Heijst-Pfitzmann: choose p sensibly; define $C(x, y) = 4^{x}9^{y} \mod p$ for suitable ranges of x and y.

Simple, beautiful, structured.

Very easy security reduction:

finding *C* collision implies

computing a discrete logarithm.

Typical exaggerations:

C is "provably secure"; C is

"cryptographically collision-free";

"security follows from rigorous

mathematical proofs".

Security losses in C include 1922 Kraitchik (index calcul 1986 Coppersmith-Odlyzko-Schroeppel (NFS predecesso 1993 Gordon (general DL N 1993 Schirokauer (faster NF 1994 Shor (quantum poly ti many subsequent attack spe from people who care about pre-quantum security.

C is very bad cryptography. No matter what user's cost is, obtain better security with "unstructured" compression function designs such as BL

che-

ic ted

cles 3.

attack. keys. 1991 Chaum-van Heijst-Pfitzmann: choose p sensibly; define $C(x, y) = 4^x 9^y \mod p$ for suitable ranges of x and y.

Simple, beautiful, structured. Very easy security reduction: finding *C* collision implies computing a discrete logarithm.

Typical exaggerations:

C is "provably secure"; C is

"cryptographically collision-free";

"security follows from rigorous

mathematical proofs".

Security losses in C include 1922 Kraitchik (index calculus); 1986 Coppersmith-Odlyzko-Schroeppel (NFS predecessor); 1993 Gordon (general DL NFS); 1993 Schirokauer (faster NFS); 1994 Shor (quantum poly time); many subsequent attack speedups from people who care about pre-quantum security.

C is very bad cryptography.

No matter what user's cost limit is, obtain better security with "unstructured" compressionfunction designs such as BLAKE.

ck surfaces are dangerous

aum-van Heijstnn: choose p sensibly; $f(x, y) = 4^{x}9^{y} \mod p$ ble ranges of x and y.

beautiful, structured.

beautiful, structured.

sy security reduction:

C collision implies ng a discrete logarithm.

exaggerations:

ovably secure"; C is graphically collision-free"; follows from rigorous atical proofs".

Security losses in C include 1922 Kraitchik (index calculus); 1986 Coppersmith-Odlyzko-Schroeppel (NFS predecessor); 1993 Gordon (general DL NFS); 1993 Schirokauer (faster NFS); 1994 Shor (quantum poly time); many subsequent attack speedups from people who care about pre-quantum security.

C is very bad cryptography.

No matter what user's cost limit is, obtain better security with "unstructured" compression-function designs such as BLAKE.

For publy Some moseems to but purson lead

simpler suffered than EC attacks

Pre-quai

2013 Ba Thomé:

break of

s are dangerous

Heijste p sensibly; $x^{x}9^{y}$ mod pof x and y.

structured.
reduction:
implies
ete logarithm.

ons:

ure"; C is collision-free"; rom rigorous ofs".

Security losses in *C* include 1922 Kraitchik (index calculus); 1986 Coppersmith-Odlyzko-Schroeppel (NFS predecessor); 1993 Gordon (general DL NFS); 1993 Schirokauer (faster NFS); 1994 Shor (quantum poly time); many subsequent attack speedups from people who care about pre-quantum security.

C is very bad cryptography.

No matter what user's cost limit is, obtain better security with "unstructured" compression-function designs such as BLAKE.

For public-key end Some mathematic seems to be unavouble but pursuing simp often leads to secu

simpler than ECD suffered many more than ECDH. State attacks are very constant attacks are very constant.

Pre-quantum exan

2013 Barbulescu—(Thomé: pre-quant break of small-cha

gerous

35

y;

у.

:

hm.

ree";

Security losses in *C* include 1922 Kraitchik (index calculus); 1986 Coppersmith-Odlyzko-Schroeppel (NFS predecessor); 1993 Gordon (general DL NFS); 1993 Schirokauer (faster NFS); 1994 Shor (quantum poly time); many subsequent attack speedups from people who care about pre-quantum security.

C is very bad cryptography.

No matter what user's cost limit is, obtain better security with "unstructured" compression-function designs such as BLAKE.

For public-key encryption:
Some mathematical structures seems to be unavoidable,
but pursuing simple structure often leads to security disast

Pre-quantum example: DH simpler than ECDH, but DF suffered many more security than ECDH. State-of-the-ar attacks are very complicated

2013 Barbulescu—Gaudry—Jo Thomé: pre-quantum quasibreak of small-characteristic

C is very bad cryptography.

No matter what user's cost limit is, obtain better security with "unstructured" compression-function designs such as BLAKE.

For public-key encryption:
Some mathematical structure
seems to be unavoidable,
but pursuing simple structures
often leads to security disasters.

Pre-quantum example: DH is simpler than ECDH, but DH has suffered many more security losses than ECDH. State-of-the-art DH attacks are very complicated.

2013 Barbulescu—Gaudry—Joux— Thomé: pre-quantum quasi-poly break of small-characteristic DH. losses in C include aitchik (index calculus); ppersmith-Odlyzkopel (NFS predecessor); rdon (general DL NFS); hirokauer (faster NFS); or (quantum poly time); bsequent attack speedups ople who care about ntum security. bad cryptography. er what user's cost limit

er what user's cost limit n better security with stured" compression-designs such as BLAKE.

For public-key encryption:
Some mathematical structure
seems to be unavoidable,
but pursuing simple structures
often leads to security disasters.

Pre-quantum example: DH is simpler than ECDH, but DH has suffered many more security losses than ECDH. State-of-the-art DH attacks are very complicated.

2013 Barbulescu—Gaudry—Joux— Thomé: pre-quantum quasi-poly break of small-characteristic DH. The stat against are muc than the Lattice-l advertise simple", "linear c Attacks

For effice cryptosy features surface e

rings and

C include dex calculus); -Odlyzkopredecessor); eral DL NFS); (faster NFS); ım poly time); attack speedups care about rity.

tography.
ser's cost limit
ecurity with
mpressionuch as BLAKE.

For public-key encryption:
Some mathematical structure
seems to be unavoidable,
but pursuing simple structures
often leads to security disasters.

Pre-quantum example: DH is simpler than ECDH, but DH has suffered many more security losses than ECDH. State-of-the-art DH attacks are very complicated.

2013 Barbulescu—Gaudry—Joux— Thomé: pre-quantum quasi-poly break of small-characteristic DH. The state-of-the-a against Cohen's crare much more cothan the cryptosys

Lattice-based crypadvertised as "algorithms simple", consisting "linear operations Attacks exploit this

For efficiency, lattice cryptosystems usu features that expand surface even more rings and decryptions.

us); r); FS); me); edups

limit h

AKE.

For public-key encryption:
Some mathematical structure
seems to be unavoidable,
but pursuing simple structures
often leads to security disasters.

Pre-quantum example: DH is simpler than ECDH, but DH has suffered many more security losses than ECDH. State-of-the-art DH attacks are very complicated.

2013 Barbulescu—Gaudry—Joux— Thomé: pre-quantum quasi-poly break of small-characteristic DH. The state-of-the-art attacks against Cohen's cryptosystemare much more complicated than the cryptosystem is. So

Lattice-based cryptosystems advertised as "algorithmicall simple", consisting mainly o "linear operations on vectors Attacks exploit this structure.

For efficiency, lattice-based cryptosystems usually have features that expand the att surface even more: e.g., rings and decryption failures

37

For public-key encryption:
Some mathematical structure
seems to be unavoidable,
but pursuing simple structures
often leads to security disasters.

Pre-quantum example: DH is simpler than ECDH, but DH has suffered many more security losses than ECDH. State-of-the-art DH attacks are very complicated.

2013 Barbulescu—Gaudry—Joux— Thomé: pre-quantum quasi-poly break of small-characteristic DH. The state-of-the-art attacks against Cohen's cryptosystem are much more complicated than the cryptosystem is. Scary!

Lattice-based cryptosystems are advertised as "algorithmically simple", consisting mainly of "linear operations on vectors".

Attacks exploit this structure!

For efficiency, lattice-based cryptosystems usually have features that expand the attack surface even more: e.g., rings and decryption failures.